

PROTEOMIC AND PATHWAY ANALYSIS OF ADRENOCORTICAL CANCER IN AN IN VIVO XENOGRAFT STUDY

Zoltán Nagy¹, Kornélia Baghy², Éva Hunyadi-Gulyás³, Ilona Kovalszky², Katalin F. Medzihradszky³, Károly Rácz¹,⁴, Attila Patócs⁴,⁵, <u>Peter Igaz¹</u>

THE STATE OF STATE OF

SET

¹2nd Department of Medicine, Faculty of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46., Hungary, ²1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, H-1088 Budapest, Üllői Str. 26., Hungary, ³Biological Research Centre, H-6726 Szeged, Temesvári krt. 62., Hungary, ⁴Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46., H-1088 Budapest, Hungary, ⁵"Lendület-2013" Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46., H-1088 Budapest, Hungary

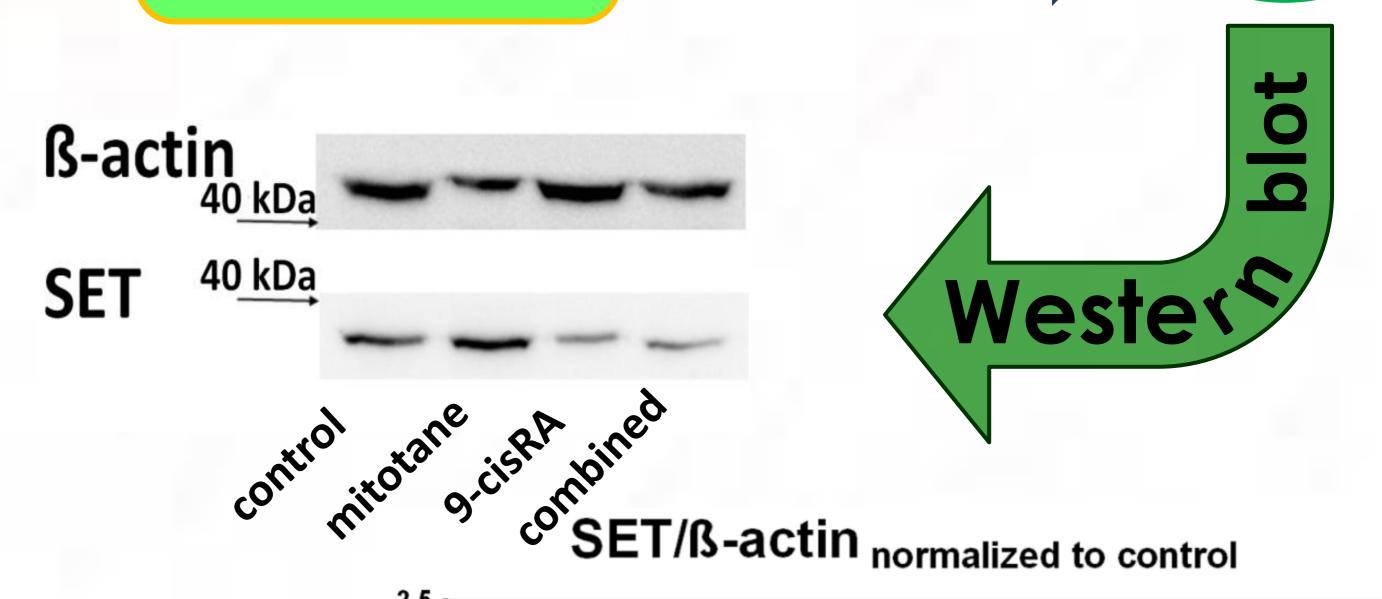
INTRODUCTION

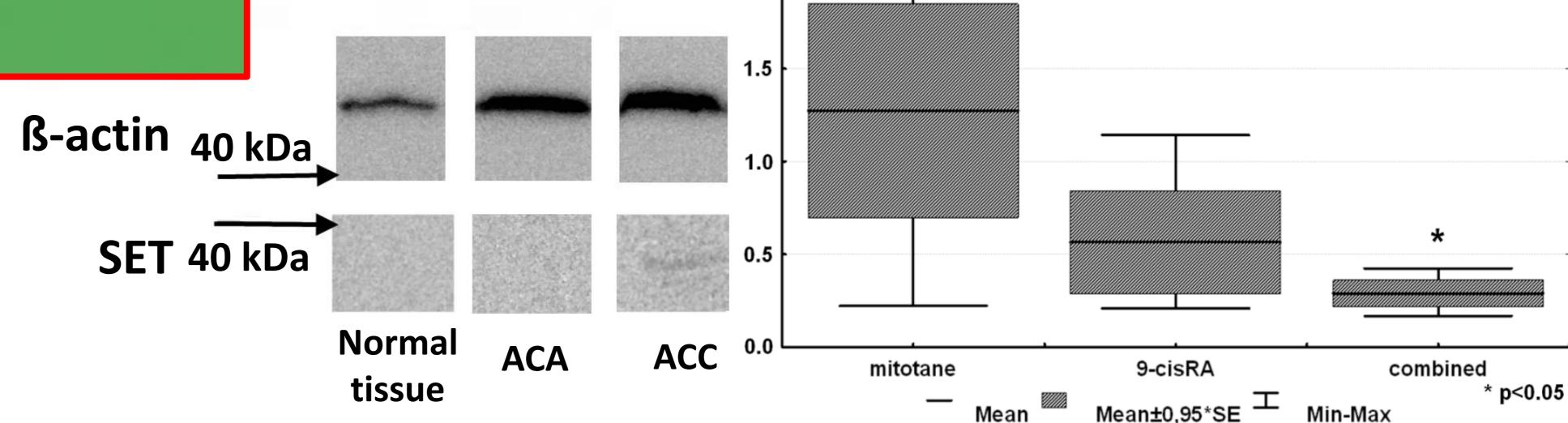
Few effective medical treatment options are available for adrenocortical carcinoma (ACC). Intensive efforts are going on for exploring novel pathways and treatment targets. In our previous functional genomics study, retinoid signaling via the retinoid X receptor (RXR) was identified as a major pathogenic pathway in ACC and we have demonstrated the *in vitro* activity of 9-cis retinoic acid (9-cisRA) acting via the RXR on NCI-H295R cells. In this present study we have investigated the antitumoral effects of 9-cisRA and mitotane on ACC *in vivo* in a large-scale xenograft model.

METHODS

- 43 male H295R xenografted SCID mice in four groups (i. control, corn oil; ii. mitotane, 200 mg/kg; iii. 9 cisRA, 5 mg/kg; iv. combined, 200 mg/kg mitotane, 5mg/kg 9-cisRA)
- Protein isolation
- 3 protein sample/groups for LC-MSMS analysis
- Validation of one selected protein with Western-blot
- Pathway-analysis with David 6.7
- Western blot of 2-2-2 sample from physiologic, benign and malignant adrenal tissues

OBJECTIVE


To perform a proteomics and pathway analysis on a 9-cisRA (9-cis retinoic acid) and mitotane-treated ACC xenograft model.


RESULTS

- 47 significant protein changes found with proteomics between the combined and control groups
- Protein SET was validated by Western-blot to be significantly underexpressed in the combined treated group relative to control
- Protein SET was found weekly expressed in human ACC tissue samples
- Proteins affected in p53- and Wnt-pathways were found
- Pathways linked to the ribosome and proteasome were identified

Proteomics analysis

47 significant Literature data

2.0

Pathway analysis

P04398:p53 pathway feedback loops 2

P00021:FGF signaling pathway

P00018:EGF receptor signaling pathway

P04397:p53 pathway by glucose deprivation

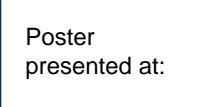
REACT_11045:Signaling by Wnt

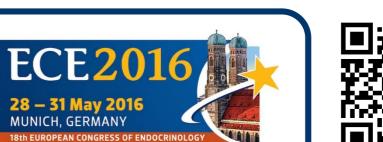
REACT_15295:Opioid Signalling

REACT_71:Gene Expression

REACT_17015:Metabolism of proteins

REACT_1505:Integration of energy metabolism


REACT_1762:3' -UTR-mediated translational regulation


Ribosome

Wnt signaling pathway

CONCLUSIONS

- The SET protein might be a novel player in ACC biology, but its pathogenic relevance need to be confirmed
- 2. We have identified that combination of 9-cisRA and mitotane influences several pathways involved in ACC pathogenesis

KEGG_PATHWAY

KEGG_PATHWAY