THE EVALUATION OF OXIDATIVE STATUS VIA THE MEASUREMENTS OF TOTAL OXIDANT STATUS, TOTAL ANTI-OXIDANT STATUS, ISCHEMIA-MODIFIED ALBUMIN AND OXIDIZED-LOW DENSITY LIPOPROTEIN IN PATIENTS WITH VITAMIN D DEFICIENCY Husniye BASER¹, Ummugulsum CAN², Salih BASER³, Bahauddin Taha HIDAYETOGLU³, Uysaler ASLAN³, Ilker BUYUKTORUN³, Fatma Humeyra YERLIKAYA⁴ ¹Department of Endocrinology and Metabolism, Konya Education and Research Hospital, Konya, TURKEY ²Department of Biochemistry, Konya Education and Research Hospital, Konya, TURKEY ³Department of Internal Medicine, Konya Education and Research Hospital, Konya, TURKEY ⁴Department of Biochemistry, Necmettin Erbakan University Faculty of Medicine, Konya, TURKEY ### Introduction District Oxidative damage may be responsible for pathogenesis and complications of many diseases. Vitamin D deficiency has been suggested as a potential mediator of various extraskeletal pathologies. However, there are limited data on antioxidant properties of vitamin D. ## Methods Forty-one subjects with vitamin D deficiency and 30 healthy controls were enrolled in the study. The levels of total anti-oxidant status (TAS), total oxidant status (TOS), ischemia-modified albumin (IMA), oxidized-low density lipoprotein (ox-LDL), high-sensitivity C-reactive protein (hs-CRP) and fibrinogen were measured in the patient and control groups. ### Results - ➤ IMA and TOS levels in patients were significantly higher than those of controls (p<0.001 and p=0.035, respectively). TAS levels were significantly lower in patients, compared to controls (p<0.001). In addition, fibrinogen was significantly higher in patients than controls (p=0.003) while ox-LDL and hs-CRP levels were similar between the two groups (p>0.05 for all parameters) (Table 1). - ➤ In 17 patients whose oxidative stress parameters were measured again after the replacement of vitamin D, it was observed that TAS level was significantly increased (p=0.037), and the levels of TOS and fibrinogen were significantly decreased (p=0.043 and p=0.010, respectively). No alterations were seen in IMA, ox-LDL and hs-CRP levels after the replacement (p>0.05 for all parameters) (Table 2). - A negative correlation was observed between vitamin D levels, and IMA and fibrinogen levels (r=-0.500, p<0.001 and r=-0.391, p=0.002, respectively). In addition, vitamin D was positively correlated with TAS levels (r=0.430, p<0.001). No significant correlation was found between vitamin D levels, and TOS, ox-LDL and hs-CRP levels (p>0.05 for all parameters). - Serum calcium (Ca) levels were negatively correlated with IMA levels (r=-0.406, p=0.001), and no significant correlation was found between serum Ca, and TAS, TOS and ox-LDL (p>0.05 for all parameters). In addition, serum phosphorus (P) levels were not correlated with IMA, TAS, TOS and ox-LDL levels (p>0.05 for all parameters). Table 1. Laboratory data of the study groups | | Patients (n=41) | Controls
(n=30) | p | |---|--------------------------|--------------------------|--------| | Age (yrs) | 40.2±9.4 | 41.29±8.6 | 0.666 | | Female/Male | 33/8 | 24/6 | 0.959 | | 25(OH)D (ng/mL) | 10.72 ± 5.31 | 32.09 ± 3.61 | <0.001 | | Serum Ca (mg/dL) | 9.11 ± 0.37 | 9.11 ± 0.26 | 0.915 | | Serum P (mg/dL) | 3.41 ± 0.38 | 3.30 ± 0.36 | 0.227 | | TAS (mmol Trolox equiv./L) | 1.28±0.11 | 1.42±0.15 | <0.001 | | TOS (μmol H ₂ O ₂ equiv./L) | 4.98 ± 4.00 | 3.48 ± 1.43 | 0.035 | | IMA (ABSU) | 0.54 ± 0.10 | 0.38 ± 0.16 | <0.001 | | Ox-LDL (ng/L) | 1451.30
(703-6776.30) | 1618
(669.70-3823.0) | 0.895 | | Hs-CRP (mg/L) | 1.14
(0.16-11.70) | 1.26
(0.27-9.85) | 0.780 | | Fibrinogen (g/L) | 392.99±69.06 | 329.93 ± 97.74 | 0.003 | Table 2. Pre- and post-treatment oxidative stress parameters of patients with vitamin D deficiency | patients with vitamin D deficiency | | | | | |---|----------------------------|---------------------------|---------|--| | | Before (n=17) | After (n=17) | p | | | 25 (OH) D (ng/mL) | 8.33 ± 1.47 | 41.75 ± 14.28 | < 0.001 | | | Serum Ca (mg/dL) | 9.13 ± 0.37 | 9.25 ± 0.28 | 0.286 | | | Serum P (mg/dL) | 3.41 ± 0.40 | 3.47 ± 0.35 | 0.594 | | | TAS (mmol Trolox equiv./L) | 1.25 ± 0.09 | 1.30 ± 0.07 | 0.037 | | | TOS (μmol H ₂ O ₂ equiv./L) | 5.12 ± 4.70 | 2.78 ± 1.17 | 0.043 | | | IMA (ABSU) | 0.54 ± 0.10 | 0.47 ± 0.13 | 0.098 | | | Ox-LDL (ng/L) | 1391.35
(1059.7-6776.3) | 1179.65
(736.3-6076.3) | 0.394 | | | Hs-CRP (mg/L) | 0.94
(0.16-11.70) | 0.96 (0.15-6.24) | 0.112 | | | Fibrinogen (g/L) | 390.41±63.04 | 334.90±89.58 | 0.010 | | # Conclusion In this study, increased levels of TOS and IMA were observed in patients with vitamin D deficiency, and TAS levels were decreased. In light of these findings, it may be suggested that oxidative/anti-oxidative balance shifts in favour of oxidative side in vitamin D deficiency.