THE EVALUATION OF OXIDATIVE STATUS VIA THE MEASUREMENTS OF TOTAL OXIDANT STATUS, TOTAL ANTI-OXIDANT STATUS, ISCHEMIA-MODIFIED ALBUMIN AND OXIDIZED-LOW DENSITY LIPOPROTEIN IN PATIENTS WITH VITAMIN D DEFICIENCY

Husniye BASER¹, Ummugulsum CAN², Salih BASER³, Bahauddin Taha HIDAYETOGLU³, Uysaler ASLAN³, Ilker BUYUKTORUN³, Fatma Humeyra YERLIKAYA⁴

¹Department of Endocrinology and Metabolism, Konya Education and Research Hospital, Konya, TURKEY

²Department of Biochemistry, Konya Education and Research Hospital, Konya, TURKEY

³Department of Internal Medicine, Konya Education and Research Hospital, Konya, TURKEY

⁴Department of Biochemistry, Necmettin Erbakan University Faculty of Medicine, Konya, TURKEY

Introduction

District Oxidative damage may be responsible for pathogenesis and complications of many diseases. Vitamin D deficiency has been suggested as a potential mediator of various extraskeletal pathologies. However, there are limited data on antioxidant properties of vitamin D.

Methods

Forty-one subjects with vitamin D deficiency and 30 healthy controls were enrolled in the study. The levels of total anti-oxidant status (TAS), total oxidant status (TOS), ischemia-modified albumin (IMA), oxidized-low density lipoprotein (ox-LDL), high-sensitivity C-reactive protein (hs-CRP) and fibrinogen were measured in the patient and control groups.

Results

- ➤ IMA and TOS levels in patients were significantly higher than those of controls (p<0.001 and p=0.035, respectively). TAS levels were significantly lower in patients, compared to controls (p<0.001). In addition, fibrinogen was significantly higher in patients than controls (p=0.003) while ox-LDL and hs-CRP levels were similar between the two groups (p>0.05 for all parameters) (Table 1).
- ➤ In 17 patients whose oxidative stress parameters were measured again after the replacement of vitamin D, it was observed that TAS level was significantly increased (p=0.037), and the levels of TOS and fibrinogen were significantly decreased (p=0.043 and p=0.010, respectively). No alterations were seen in IMA, ox-LDL and hs-CRP levels after the replacement (p>0.05 for all parameters) (Table 2).
- A negative correlation was observed between vitamin D levels, and IMA and fibrinogen levels (r=-0.500, p<0.001 and r=-0.391, p=0.002, respectively). In addition, vitamin D was positively correlated with TAS levels (r=0.430, p<0.001). No significant correlation was found between vitamin D levels, and TOS, ox-LDL and hs-CRP levels (p>0.05 for all parameters).
- Serum calcium (Ca) levels were negatively correlated with IMA levels (r=-0.406, p=0.001), and no significant correlation was found between serum Ca, and TAS, TOS and ox-LDL (p>0.05 for all parameters). In addition, serum phosphorus (P) levels were not correlated with IMA, TAS, TOS and ox-LDL levels (p>0.05 for all parameters).

Table 1. Laboratory data of the study groups

	Patients (n=41)	Controls (n=30)	p
Age (yrs)	40.2±9.4	41.29±8.6	0.666
Female/Male	33/8	24/6	0.959
25(OH)D (ng/mL)	10.72 ± 5.31	32.09 ± 3.61	<0.001
Serum Ca (mg/dL)	9.11 ± 0.37	9.11 ± 0.26	0.915
Serum P (mg/dL)	3.41 ± 0.38	3.30 ± 0.36	0.227
TAS (mmol Trolox equiv./L)	1.28±0.11	1.42±0.15	<0.001
TOS (μmol H ₂ O ₂ equiv./L)	4.98 ± 4.00	3.48 ± 1.43	0.035
IMA (ABSU)	0.54 ± 0.10	0.38 ± 0.16	<0.001
Ox-LDL (ng/L)	1451.30 (703-6776.30)	1618 (669.70-3823.0)	0.895
Hs-CRP (mg/L)	1.14 (0.16-11.70)	1.26 (0.27-9.85)	0.780
Fibrinogen (g/L)	392.99±69.06	329.93 ± 97.74	0.003

Table 2. Pre- and post-treatment oxidative stress parameters of patients with vitamin D deficiency

patients with vitamin D deficiency				
	Before (n=17)	After (n=17)	p	
25 (OH) D (ng/mL)	8.33 ± 1.47	41.75 ± 14.28	< 0.001	
Serum Ca (mg/dL)	9.13 ± 0.37	9.25 ± 0.28	0.286	
Serum P (mg/dL)	3.41 ± 0.40	3.47 ± 0.35	0.594	
TAS (mmol Trolox equiv./L)	1.25 ± 0.09	1.30 ± 0.07	0.037	
TOS (μmol H ₂ O ₂ equiv./L)	5.12 ± 4.70	2.78 ± 1.17	0.043	
IMA (ABSU)	0.54 ± 0.10	0.47 ± 0.13	0.098	
Ox-LDL (ng/L)	1391.35 (1059.7-6776.3)	1179.65 (736.3-6076.3)	0.394	
Hs-CRP (mg/L)	0.94 (0.16-11.70)	0.96 (0.15-6.24)	0.112	
Fibrinogen (g/L)	390.41±63.04	334.90±89.58	0.010	

Conclusion

In this study, increased levels of TOS and IMA were observed in patients with vitamin D deficiency, and TAS levels were decreased. In light of these findings, it may be suggested that oxidative/anti-oxidative balance shifts in favour of oxidative side in vitamin D deficiency.

