

METFORMIN TREATMENT OF HYPOTHALAMIC OBESITY – THE LESSON OF TWO CASES

Codruta Nemes¹, Sabina Secara¹, S.I. Florian^{2,3}, Cristina Ghervan ^{1,3}

¹Department of Endocrinology, Emergency County Hospital, Cluj Napoca, Romania, ²Department of Neurosurgery, Emergency County Hospital, Cluj Napoca, Romania, ³University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj Napoca, Romania

INTRODUCTION

- Hypothalamic obesity (HO) a syndrome of intractable weight gain as a result of hypothalamic lesions [1]
- Causes: craniopharyngioma (more than 50 % of the cases), other posterior fossa tumors, infiltrative diseases of the hypothalamus, head trauma or pseudotumor cerebri [1,2]
- Treatment: lifestyle interventions, pharmacotherapy (sympathomimetic drugs and drugs that counteract the increased vagal tone) and surgery
- Metformin antidiabetic drug also used in nondiabetic obese patients as it has been demonstrated that it promotes weight loss. Metformin alone has not been tested in patients with HO
- We present two cases of HO (an adult and a pediatric patient) in which successful weight loss was obtained following treatment with Metformin

CASE PRESENTATION 1

- 44 year old female patient admitted for:
 - severe headache
 - visual acuity loss in both eyes
 - secondary amenorrhea
 - polyuria, polydipsia
- Cranial CT scan -> craniopharyngioma
- October 2006 transcranial surgery; November 2009 second surgery (tumor recurrence)
- Following surgeries: severe HO (she gained 45 kg)
 - panhypopituitarism treated with 5 mg Prednison/day, 100 μg

Euthyrox/day, Climara 1 patch/week, Duphaston 10 mg/day, 10 days/month

- diabetes insipidus treated with Minirin MELT 120 μg 2x1/day

	Weight (kg)	BMI (kg/m²)	Insuline (μU/ml)	HOMA-IR
0 1 1 2000			(1.077	
October 2006	105	34,3		
Preoperative	111	27.2		
October 2007	114	37,3		
1 year postoperative				
December 2007	119	38,8		
January 2009	120	39,2		
November 2009 – reinte	ervention for t	tumor recur	rence	
January 2010	117	38,2	40,4	9,87
→ Sibutramine 10 mg/d	lay is initiated			
June 2010	136	44,4	22,7	4,76
→ Sibutramine is replac	ed with Orlist	at 3 x 120 m	ng/day	
June 2011	150	49,01	34,2	7,17
→ Orlistat is replaced w	ith Metformi	n 2 x 850 mg	g/day	
October 2011	137	44,7	69,5	13,21
→ Metformin dose is in	creased at 2 x	1000 mg/d	ay	
November 2011	135	44,1	30,7	6,59
October 2012	126	41,1	32,2	5,56

116

37,9

Fig. 1 Cranial MRI before the second surgery

Fig. 2 Postoperative cranial MRI

CASE PRESENTATION 2

- 6,4 year old female patient admitted for:
 - chronic headache
 - decreased growth
- Cerebral MRI: suprasellar tumor -> transcranial surgery
- Histopathologic diagnosis mixed germ cell tumor (grade 3 immature teratoma and germinoma -> chemotherapy and radiotherapy
- Following surgery:
- panhypopituitarism treated with 2,5 mg Prednison/day, 75 μg L-Thyroxine/day
- diabetes insipidus treated with Minirin MELT 60 μg 2x1/day
- severe hypothalamic obesity (she gained 32 kg in 2.5 years)
 - dyslipidemia
 - steatohepatitis

After 2 months of treatment

Weight: 55 kg (-5 kg) HOMA-IR: 4,98 ALT: 54 U/L BMI: 48 kg/m2 Chol: 220 mg/dl AST: 72 U/L TG: 390 mg/dl

After 6 months of treatment

Weight: 42 kg (-18 kg) HOMA-IR: 4,69 ALT: 23 U/L BMI: 36 kg/m2 Chol: 188 mg/dl AST: 41 U/L TG: 220 mg/dl

After 1 year of treatment

Weight: 39 kg (-21 kg) HOMA-IR: 3,26 ALT: normal BMI: 33.4 kg/m2 Chol: 208 mg/dl AST: normal TG: 184 mg/dl

After 2 years of treatment

Weight: 45 kg (+ 6kg) HOMA-IR: 4,13 ALT: normal BMI: 35.8 kg/m2 Chol: 216 mg/dl AST: normal TG: 263 mg/dl

← Fig. 3 The second patient's growth chart.

(Red arrow –suprasellar tumor diagnosis)

DISCUSSION AND CONCLUSIONS

- Hypothalamic obesity is a severe, debilitating disease that affects a large proportion of the patients with hypothalamic lesions, leading to multiple complications and an impaired quality of life.
- Both our patients developed hypothalamic obesity following surgery for craniopharyngioma and teratoma respectively. They experienced rapid weight gain which was resistant to lifestyle interventions and Sibutramine or Orlistat therapy.
- Metformin proved to be safe, well tolerated and effective in promoting weight loss in our two patients.

4,96

24,5

- Hamilton et al, 2011 observed a decrease in weight gain and BMI in children with HO due to intracranial damage, after 6 month of treatment with Metformin and Diazoxide [5].
- Larger, long-term and placebo-controlled studies are required in order to confirm the efficiency of Metformin alone in patients with hypothalamic obesity.

REFERENCES

- 1. Lustig R. H.Hypothalamic obesity after craniopharyngioma: mechanisms, diagnosis and treatment. Front Endocrinol. 2011; 2:60
- 2. Lee M., Korner E. J. Review of physiology, clinical manifestations, and management of hypothalamic obesity in humans. Pituitary. 2009;12:87-95
- 3. Shaikh, M.G. et al. Reductions in basal metabolic rate and physical activity contribute to hypothalamic obesity. J. Clin. Endocrinol. Metab. 2008; 93, 2588–2593
- 4. Rosenfeld A. et al. A Review of Childhood and Adolescent Craniopharyngiomas With Particular Attention to Hypothalamic Obesity. Pediatr Neurol 2014;50(1):4-10
- 5. Hamilton J K et al. Hypothalamic Obesity following Craniopharyngioma Surgery: Results of a Pilot Trial of Combined Diazoxide and Metformin Therapy. Int J Pediatr Endocrinol 2011;(1): 417949

October 2013

