

LOW/UNDECTABLE PRE-ABLATION THYROGLOBULIN IN WELL-DIFFERENTIATED THYROID CANCER PATIENTS WITH POSITIVE I-131 WHOLE BODY SCANS — CAUSES AND CONSEQUENCES

D. Guelho¹, F. Albán², M. Melo¹, C. Ribeiro¹, I. Paiva¹, C. Moreno¹, N. Vicente¹, L. Cardoso¹, D. Oliveira¹, D. Martins¹, M. Balsa³, G. Costa², F. Carrilho¹

¹Endocrinology, Diabetes and Metabolism Department of Coimbra Hospital and University Centre, Portugal
²Nuclear Medicine Department of Coimbra Hospital and University Centre, Portugal
³Endocrinology, Diabetes and Nutrition Department of Baixo Vouga Hospital Centre, Portugal

INTRODUCTION

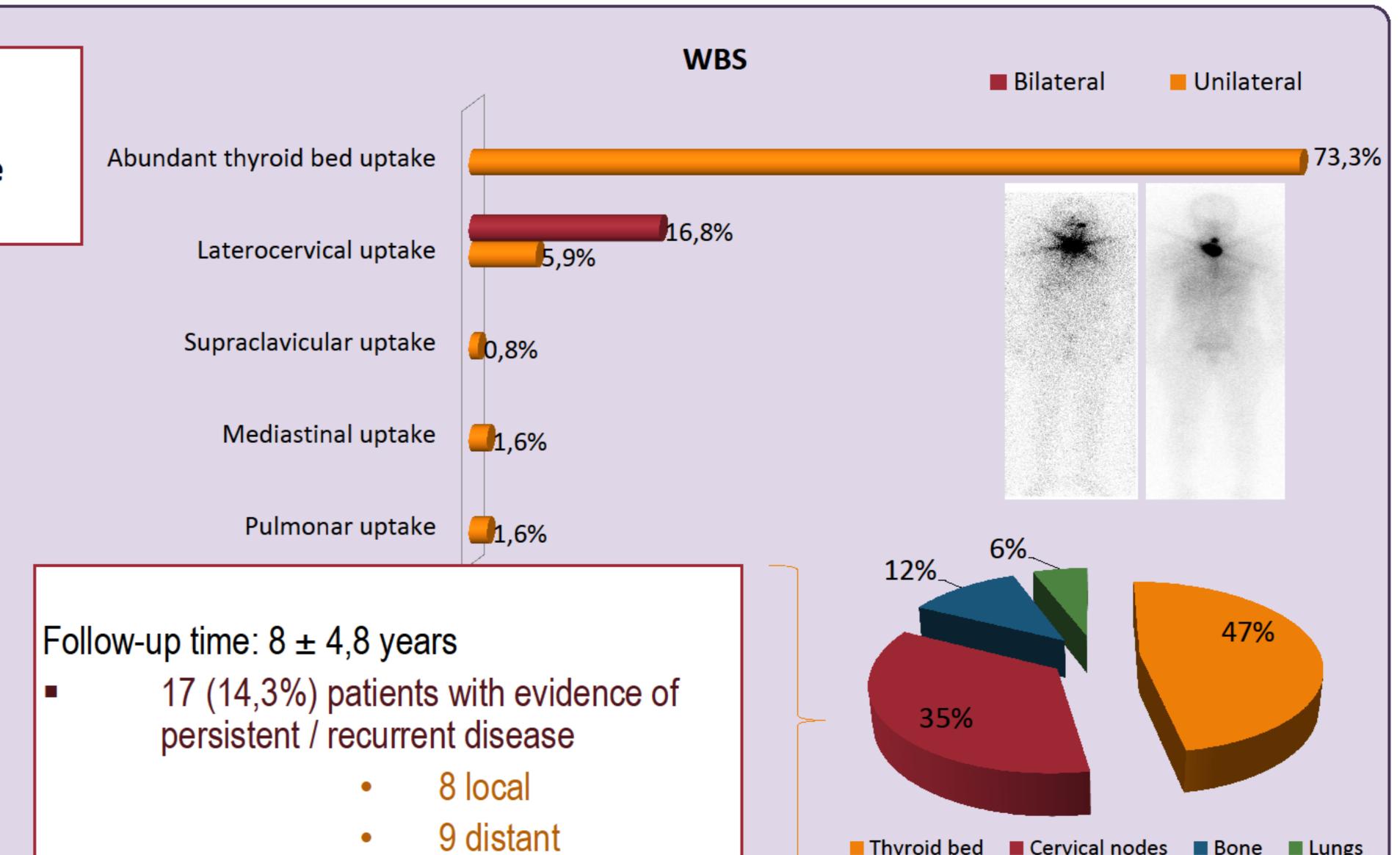
In patients with well-differentiated thyroid cancer (DTC) low/undetectable thyroglobulin (TG) at time of remnant ablation usually reflects a complete previous surgery. However, in a small percentage (6.3-16%) it can represent false negative values.

OBJECTIVES

Evaluate the frequency of patients with low/undectable TG at time of remnant ablation with loco-regional or distant lesions at post-ablative I-131 whole body scan (WBS) and the influence of TG levels in long-term outcome.

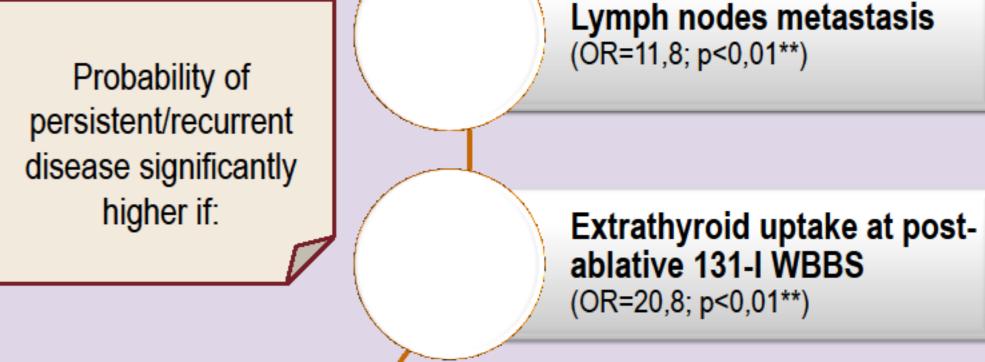
METHODS

- Retrospective analysis of all patients with DTC submitted to ablative I-131 treatment in our centre. Included: patients with a stimulated TG < 5ng/mL (measured at time of remnant ablation) and loco-regional or distant uptake at post-ablative I-131 WBS, performed 6-7 days after.
- Excluded: patients with TSH<30mUI/mL after thyroid hormone withdrawal or with a follow-up<6months.
- Statistical analysis: SPSS(21).

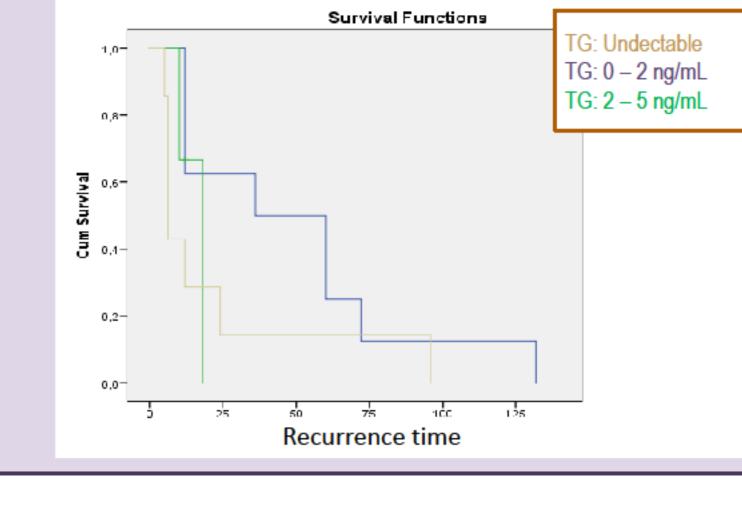

RESULTS

- Of 967 patients, 211 **(21.8%)** were included (178 \mathfrak{P} ; 33 \mathfrak{T})
- Ninety two (43.6%) presented anti-TG antibodies
- Only patients with negative anti-TG antibodies (n=119) were considered for analysis

Clinico-pathological characterisitics			
TNM classification	T1	93 (78,2%)	
	T2	19 (16%)	
	T3	1 (0,8%)	
	T4	6 (5%)	
	No or Nx	111 (93,3%)	
	N1a	8 (6,7%)	
	N1b	0 (0%)	
Recurrence risk	Low	95 (79,8%)	
	Intermediate	22 (18,5%)	
	High	2 (1,7%)	
TSH stimulation (THW/rhTSH)		87/32 (73,1%/26,9%)	
	TSH (uUI/mL)	$54,0 \pm 40,6$	
	Thyroglobulin (ng/mL)	1,2 ± 1,4	
Thyroglobulin Classes	Undetectable	55 (46,2%)	
	0– 2 ng/mL	33 (27,7%)	
	2-5 ng/mL	31 (26,1%)	


Lower TG levels if (at hystopathological analysis):

- Lymphocytic infiltrate (1,2 ± 1,4 vs. 1,5 ± 1,9ng/dL, p<0,05) *
- Abundant solid areas (1,2 ± 1,2 vs. 1,8 ± 1,6ng/dL, p<0,05) *


Treatment of persistent / recurrent disease

Radioiodine therapy	82,4% (n=14)
Surgery	17,6%
	(n=3)

Disease-free survival inversely correlated with Tg at ablation time (rho=-0,597; p<0,01**)

Disease-free survival significantly higher in patients with undectatable TG levels at ablation time (p<0,05)*

■ Thyroid bed ■ Cervical nodes ■ Bone ■ Lungs

CONCLUSION

A fifth of DTC patients presented low/undectable Tg at time of remnant ablation with uptake (loco-regional or distant) at post-ablative I-131 WBS. In about half this was justified by anti-TG antibodies. In the others, may be related to the presence of microscopic lesions or specific histopathological features.

In these patients, low/undectable Tg did not exclude risk of persistence/recurrence, but seems related with disease-free survival. This study also highlights the importance of postablative I-131 WBS in the evaluation of these patients.

BIBLIOGRAPHY: Melo M., et al. Stimulated Thyroglobulin at Recombinant Human TSH-Aided Ablation Predicts Disease-free Status One Year Later. J Clin Endocr Metab 98:4364-4372 (2013); Nascimento C., et al. Persistent disease and recurrence in differentiated thyroid cancer patients with undectable postoperative stimulated thyroglobulin level. Endocr Relat Cancer 18:29-40 (2011); Cherck MH., et al. Incidence and implications of negative serum thyroglobulin but positive I-131 scans in patients with well-differentiated thyroid cancr prepared with rhTSH or thyroid hormone withdrawal. Clin Endocrinol 76:734-740 (2012)

Daniela Guelho