Introduction:

- Graves Disease is a common cause of thyrotoxicosis particularly in female.
- The response to treatment with thionamides is usually excellent.
- The commonest cause of treatment failure is poor drug adherence.
- We present a patient with Graves Disease who did not respond to Carbimazole despite a good compliance suggesting resistance to the drug.

Case Presentation:

- A 54 years old female referred with symptoms of clinical and biochemical thyrotoxicosis which were not improving on Carbimazole 40 mg daily inspite of good compliance for 3 months.
- TRAb was strongly positive confirming diagnosis of Graves Disease.
- She was otherwise fit and well and was not taking any other medications. There was no evidence of malabsorption. She had negative duodenal biopsies for Coeliac disease in the past.
- The dose of Carbimazole was increased to 60 mg daily with addition of beta-blockers.
- She remained symptomatic with no improvement in her TFTs as shown in Table 1.
- She even develop a mild leucopoenia with WBC 3.1 and Neutrophil count 1.5 most likely related to Carbimazole which further strengthened the evidence of her drug compliance.
- There was a risk of her going into thyroid storm and therefore she underwent uneventful total thyroidectomy after she was made euthyroid with Lugol’s Iodine for 10 days.
- The histology confirmed changes consistent with Graves Disease.

Discussion:

- Thionamides resistant Graves disease is rare but cases have been reported in literature.
- The exact cause of drug resistance is unknown but possible mechanisms include drug malabsorption, anti-drug antibodies, rapid drug metabolism, impairment of intra-thyroidal drug accumulation or action and predominant T3 toxicity.
- Resistance to drugs can be tested by performing perchlorate discharge test 4 hours after administration of carbimazole. A negative test indicate inadequate blockade of iodine organification and thus possible Carbimazole resistance.
- Urinary Iodine excretion can be measured to rule out exogenous iodine exposure.
- The following can be used either alone or in combination to achieve euthyroidism prior to definitive therapy.
 - Iopanoic Acid – Oral radio-contrast material which inhibit conversion of T4 to T3.
 - Glucocorticoids - Inhibit the conversion of T4 to T3 and in Graves disease decreases the secretion of thyroid Hormones.
 - Lithium - Increases intrathyroidal iodine content, inhibits the coupling of iodotyrosine residues to form iodothyronines, and inhibits the release of T4 and T3.
 - Cholestyramine – Interfere with enterohepatic circulation and recycling of thyroid hormone.
- In our patient we used Lugol’s iodine which block the release of T3 and T4 from thyroid gland as well as its synthesis by blocking iodine organification (Wolff- Chaikoff effect).

Conclusion:

- This case highlights the importance of recognising the rare possibility of thionamides resistant Graves disease and physicians needs to be aware of this.
- Lugols iodine can be used safely to achieve euthyroidism prior to definitive therapy.

<table>
<thead>
<tr>
<th>Date</th>
<th>T3</th>
<th>T4</th>
<th>TSH</th>
<th>CMZ dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2014</td>
<td>49</td>
<td><0.01</td>
<td>20mg</td>
<td></td>
</tr>
<tr>
<td>Oct 2014</td>
<td>19.9</td>
<td>41</td>
<td><0.01</td>
<td>20mg</td>
</tr>
<tr>
<td>Nov 2014</td>
<td>24.7</td>
<td>54.5</td>
<td><0.01</td>
<td>80mg</td>
</tr>
<tr>
<td>Nov 2014</td>
<td>23.1</td>
<td>55.0</td>
<td><0.01</td>
<td>80mg</td>
</tr>
<tr>
<td>1st Dec 2014</td>
<td>14.8</td>
<td>38.5</td>
<td>0.01</td>
<td>60mg</td>
</tr>
<tr>
<td>15th Dec 2014</td>
<td>19.2</td>
<td>50.1</td>
<td>0.01</td>
<td>60mg</td>
</tr>
<tr>
<td>20th Dec 2014</td>
<td>5.2</td>
<td>12.1</td>
<td>0.01</td>
<td>Lugol Iodine</td>
</tr>
<tr>
<td>Jan 2015</td>
<td>Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: TFTs from Diagnosis to surgery.