A 9 year old boy presented to A&E following a respiratory arrest which occurred after a prolonged period of coughing. He was hypoxic with sats of 60% despite bagging in 100% oxygen, bradycardic at 60 bpm, deeply unconscious and had a severe mixed acidosis. Initial resuscitation included; intubation and ventilation, IV access and fluid boluses, inotropes and broad spectrum antibiotics. Examination was unremarkable besides poor air entry bibasally and prominent finger clubbing.

The child had an unbalanced chromosome 9 and 10 translocation with consequent severe neurodevelopmental delay. He had GORD and 1 year previously had suffered an iatrogenic oesophageal perforation leading to mediastinitis, following a dilatation procedure. Other than this previous prolonged admission, he tended to stay relatively well without recurrent admissions. Prior to this attendance, he had a 2 month history of cough with a recent deterioration, being managed with antibiotics and bronchodilators.

Patient features / results

- No history of surgery or neck lines. Thought unlikely to be a recurrence of mediastinitis as clinically too well, low inflammatory markers and no fibrinous strands seen on echo.
- Pericardial fluid acculcuar
- Pericardial fluid negative on culture.
- Rhinovirus detected but not associated with pericardial effusions. Extensive viral PCR from several body sites and serology all negative
- Joint and soft tissue examination normal. Autoantibody screen negative. Ferritin elevated in context of acute illness.
- No history to suggest this, normal renal function, normal urine output without proteinurea and not overtly oedematous clinically.
- Diagnosis of exclusion

TSH > 100 mU/L, FT4 < 5 pmol/L, anti-thyroid peroxidase antibodies > 1000 U/ml. CK elevated.

Differential diagnosis of pericardial effusion

- Post intervention eg cardiac surgery or line insertion
- Malignant
- Bacterial
- Viral
- Rheumatological / Inflammatory
- Renal disease eg nephrotic syndrome
- ‘Idiopathic’
- Hypothyroidism

In retrospect, there were several clues in the history and presenting features which may have led to an earlier diagnosis. These included parental reporting of worsening dry skin, the need for higher doses of laxatives than previously, cool hands and feet and a possible increase in somnolence. In addition, during this acute admission, the child was always relatively bradycardic and cool, even when presenting extremely unwell with apparent infection. There was a fullness of his neck veins and an under recognition of his cardiomegaly on CXR. There was no other explanation for his finger clubbing which may be associated with severe autoimmune thyroid disease.

The child was commenced on low dose levothyroxine, titrated gradually to response. His pericardial drain was removed after 8 days and he was discharged from PICU after 14 days. He is currently doing well and remains under outpatient endocrine and cardiology follow-up.

Conclusions

Pericardial effusion is a long recognised and common complication of hypothyroidism, with an incidence of 30-70% in patients newly diagnosed and referred to the endocrine clinic. They are generally small and well tolerated. The fluid accumulates slowly, and has a high protein content secondary to capillary dysfunction and poor lymphatic tone leading to increased albumin leak into the interstitium. Conversely, in children presenting unwell with clinically significant pericardial effusions, hypothyroidism as the underlying diagnosis is exceedingly rare.

We presume, due to the large size of this child’s effusion, that he had been suffering from hypothyroidism for some time. It is very likely that his underlying neuodisability masked many of his symptoms and we suggest that clinicians should have a low threshold to check TFTs in children with complex co-morbidity in response to subtle concerns.

References:
Kahn B, Parker J, Marv GR et al. Endocrine, management, and outcome of pediatric pericardial effusions. Pediatric Cardiology. 2003; 24: 90-94
Kabadi UK, Kumar SP. Pericardial effusion in primary hypothyroidism: American Heart Journal. 1960; 120(3): 1363-1365
Hayford JT, Spieckerman RM, Thompson RS. Cardiac function in primary hypothyroidism. American Journal of Diseases of Children. 1960; 113(2): 556-559
Srinivas T, Srinivas T. A child with pericardial effusion and cardiac tamponade due to previously unrecognized hypothyroidism. Journal of the National Medical Association. 2007; 99(12): 1411-1413
Driyakil EC, Uzor B, Ikpe Z et al. Pericardial effusion due to hypothyroidism in Down syndrome: report of four cases. Neuroendocrinology. 2007. 28(2):141-144