Intravenous Etomidate In The Management Of Hypercortisolaemia Due To Ectopic ACTH Producing Thymic Neuroendocrine Tumor

Ved Bhushan Arya1, Vanessa Irvine1, H Rowlands1, Kim Sykes1, Gary Nicolin1, William Drake2, Helen Storr2, Justin H Davies1
1University Hospital Southampton NHS Foundation Trust 2William Harvey Research Institute, London

Introduction

- Ectopic ACTH syndrome (EAS) is an extremely rare cause of Cushing’s syndrome in young children.
- The intensity of ACTH secretion and hypercortisolaemia is greater in EAS than in Cushing’s disease.
- Control of hypercortisolaemia represents an important step in the management while awaiting localization of the ACTH source or in preparation to surgery.
- We describe a case of Cushing syndrome in a child, due to an ectopic ACTH-secreting tumour managed with an etomidate infusion prior to surgical resection of the tumour.

Case Summary

- A 6-year-old girl presented with a 2-weeks history of headaches and vomiting on a background of excessive weight gain in the preceding 6 months.
- She had classic features of Cushing’s syndrome (moon facies, plethoric cheeks, buffalo hump and striae) (Fig 1A and 1B).
- Her weight was 45 kg (>99.6th centile) and height 125.6 cm (91st centile).
- She had severe hypertension (180/110 mmHg) and hypoxia with a fluctuating conscious level on admission (hypertensive encephalopathy).
- Investigations revealed markedly elevated serum cortisol (1445 nmol/L), elevated ACTH (99 ng/L) and 24 hour urinary free cortisol 4039nmol/day (0-260).
- MRI brain showed posterior reversible encephalopathy syndrome (PRES) and no pituitary adenoma.
- CT chest showed an enlarged partially calcified nodular thymus with localised lymphadenopathy, consistent with an ACTH secreting neuroendocrine tumour (Figure 1C).
- She had a diagnosis of hypertensive encephalopathy caused by Cushing’s syndrome secondary to ectopic ACTH production from a thymic carcinoma (Figure 1D).

Management

- Captopril was used for controlled reduction of blood pressure.
- Management involved cortisol secretion blockade using an intravenous etomidate infusion (Figure 2).
- Frequent serum cortisol monitoring was undertaken to achieve complete blockade and to prevent hypoadrenalism.
- Replacement with intravenous hydrocortisone (0.5–1 mg/h) and fludrocortisone was started when serum cortisol < 200 nmol/l.
- The target serum cortisol based on mean 24-h cortisol levels in patients in an intensive care setting was 500–800 nmol/l.
- Etomidate infusion was continued for 3 weeks while investigations were undertaken to localize the ACTH secreting tumour and until the patient was deemed stable to tolerate the surgery. No drowsiness or respiratory depression was observed.
- She underwent thymectomy however residual disease was found on CT a few weeks post-operatively explaining the rising cortisol levels (Fig 1C).
- Etomidate was recommenced at 3.5mg/h and subsequently a laparoscopic bilateral adrenalectomy was undertaken and the patient was commenced on replacement hydrocortisone and fludrocortisone prior to initiating chemotherapy.

Discussion

- A consensus statement on the treatment of Cushing’s syndrome recommends the use of etomidate where rapid control of cortisol levels is required and oral therapy is problematic1 2.
- Etomidate is an imidazole, non-barbiturate anaesthetic agent, which at low doses, rapidly suppresses cortisol secretion by inhibiting 11β-hydroxylase enzyme activity3 4.
- Etomidate administration (2.5-3.5 mg/h) suppresses serum cortisol within 48-62 h and can be administered in a paediatric high-dependency unit as long as careful monitoring is undertaken5.
- Prolonged use of etomidate infusion was tolerated well in our patient.

References