

Diagnostic and Therapeutic Stratagies in Maturity Onset Diabetes of the Young

Sofia Castro Oliveira^{1,2}, Celestino Neves^{1,2}, César Esteves^{1,2}, Duarte Pignatelli^{1,2}, Davide Carvalho^{1,2,3}

¹Department of Endocrinology, Diabetes and Metabolism of Centro Hospitalar de São João, Porto, Portugal; ²Faculty of Medicine, University of Porto, Portugal; ³Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal

BACKGROUND AND OBJECTIVE

Maturity Onset Diabetes of the Young (MODY) has an estimated prevalence of 1-5% in the diabetic population, but misdiagnosis as type 1 or type 2 diabetes is common. It comprises a heterogeneous group of monogenic diseases characterized by primary dysfunction of b-cell, young onset, autosomal dominant inheritance, without autoimmunity and without ketosis. Early diagnosis remains a challenge with important future implications, since it allows treatment optimization, prognosis definition and genetic counseling of family members.

OBJECTIVE: Characterize the parameters for the diagnosis of MODY.

PATIENTS AND METHODS

We studied 9 cases in three successive generations of a family of 12 elements, with assessment of age at diagnosis, gender distribution, clinical manifestations, initial treatment and subsequent need for insulin. We analyzed the levels of glucose, HbA1c, C-peptide, the presence of ketosis and anti- β cell antibodies. Molecular analysis of GCK (glucokinase) and HNF-1 α (hepatocyte nuclear factor 1 α) genes was performed to detect MODY mutations – MODY 2 and 3 are the most frequent subtypes, accounting for 50-70% and 20-30% of cases, respectively \implies Institut de Biologie de Lille, Philippe Froguel

RESULTS

MODY n=9	
Age of diagnosis (years)	26.1 ± 8.2 years
Gender (%)	66.7% F (n=6) 33.3% M (n=3)
Disease duration (years)	12.7 ± 10.6 years
Fasting Glucose (mg/dL)	200 ± 48 mg/dL
Hb A1c (%)	8.5 ± 1.5%
Glucosuria (%)	100% (n=9)
Diabetic retinopathy (%)	66.7% (n=6) No proliferative
Diabetic nephropathy (%) Albumin excretion rate (µg/min)	44.4% (n=4) 215 ± 48 μg/min
C-peptide (ng/mL)	2.5 ± 1.1 ng/mL
Anti-β cell antibodies (%)	100% Negative (n=9)
Ketosis (%) Ketonuria (%) β-hidroxibutirate (%)	0% (n=0) 0% (n=0) 100% Undetectable (n=9)

Characteristics	MODY	DM1	DM2
Age of diagnosis	15-45 years	5-20 years	>25 years
Parental history	60-90%	<15%	10-40% (>50% in early onset DM2)
Heredity	Autosomal dominant	Polygenic	Polygenic
Obesity	Uncommon	Uncommon	Common
Metabolic Syndrome	Uncommon	Uncommon	Common
Insulin Resistance	Uncommon	Uncommon	Common
Diabetic Ketoacidosis	Rare	Common	Rare
Anti-β cell Antibodies	Absent	Present	Absent
C-Peptide	Normal	No detectable/ Low	Normal/ High
First-line Treatment	Sulfonylurea (MODY 1,3,4) Diet (MODY 2)	Insulin	Metformin

Genetic testing revealed a mutation in exon 6 (stop mutation Ser 371 OCH) of gene HNF-1α (MODY3)

Only 2 (22.2%) patients, diagnosed at 16 and 19 years, required insulin therapy, at 32 and 25 years respectively. The remaining 7 (77.8%) patients kept up with glibenclamide treatment (2.5-15mg/day).

Characteristics	MODY 2	MODY 3
Frequency	Common form, especially in children and in women with a history of gestational diabetes	More frequent form in clinical activity in adults , in most populations
Mutations	> 130 mutations on gene GCK All races and ethnic groups	> 120 mutations on gene HNF-1α All races and ethnic groups
Primary β-cell dysfunction	Impaired sensitivity to glucose in β-cells	Impairment of insulin secretion pathways in the β-cell
Manifestations	Moderate hyperglycaemia and asymptomatic	Normal fasting glucose levels in infancy Glucose levels in OGTT significantly greater than in MODY 2
Evolution	Relatively <u>stable</u> , with little deterioration lifelong	Hyperglycemia increases with disease progression Progressive decrease of insulin secretion (1 to 4% annually)

The 9 diabetics studied had clinical characteristics of **MODY**:
Asymptomatic hyperglycemia at early age; autosomal dominant transmission; several carriers of the disease in three generations of the same family

Characteristics	MODY 2	MODY 3
Treatment Insulin requirement	Good metabolic control only with dietary measures Exceptionally, some individuals with severe hyperglycemia require insulin (<2%)	ADO ou insulin are needed 30 to 40% require insulin
Chronic complications	<u>Rare</u>	Risk of microvascular complications, particularly retinopathy and nephropathy, similar to DM1 and DM2
Particularities		Decreased renal reabsorption of glucose and glycosuria Marked sensitivity to insulin secretagogues (sulfonylureas)

CONCLUSION

The clinical presentation of hyperglycemia without ketosis, no anti-β cell antibodies and C-peptide levels allowed to exclude type 1 diabetes. Genetic testing enabled to confirm mutations in gene HNF-1a and guide treatment according to clinical evolution.

References: Thanabalasingham G, Owen KR. BMJ 2011; Henzen C. Swiss Med Wkly 2012; Fajans et al. NEJM 2001; Bonnefond A, Vaxillaire M, Froguel P. PLoS One 2012

