

Robust Viral Clearance Capacity of CTP-Modified Long-Acting **Growth Hormone (MOD-4023) Downstream Production Process**

Miri Zakar, MSc, Laura Moschcovich, PhD, and Oren Hershkovitz, PhD. OPKO Biologics, Nes Ziona, Israel

INTRODUCTION AND OBJECTIVE

- **OPKO Biologics** is a clinical-stage public company developing long-acting therapeutic proteins utilizing **CTP technology**. The technology involves fusion of the C-terminus peptide of human chorionic gonadotropin (hCG), a highly O-glycosylated peptide, to the target protein.
- CTP was utilized to generate a a long-acting human growth hormone (hGH) (MOD-4023) that is produced in a CHO stable cell line, and supports a once-weekly injection in growth hormone-deficient patients.
- The purification process consists of 4 chromatographic steps, UFDF steps, a viral inactivation and a viral filtration steps.
- Objective: Validate effective inactivation and/or removal of viruses during the downstream process as a part of the demonstration of the safety of pharmaceutical products derived from biological sources. The study was designed to support MAA/BLA

PROCESS

Process Step	Step function	
1 Tocess Step	Step fulletion	
UFDF-1 and depth	Concentration; buffer exchange;	
filtration	particles and bioburden removal	
<u>Detergent Virus</u> <u>inactivation</u>	Inactivation of lipid enveloped viruses	
AIEX chromatography	Capture; process and product related impurities removal; Virus removal	
HIC chromatography	Process related impurities removal	
UFDF-2	Concentration and buffer exchange; aggregates removal	
Mixed mode	Process related impurities removal;	
<u>chromatography</u>	Virus removal	
CIEX chromatography	Process and product related impurities removal; Virus removal	
<u>Virus filtration</u>	Virus removal	
UFDF-3 and Final	Concentration and buffer exchange to final	

- MOD-4023 is purified by a multistep process.
- The purification process was designed to present a robust and efficient purification of MOD-4023 while removing process and product related impurities.
- Steps that were evaluated for viral clearance are underlined. HIC chromatography was not included based on results of previous study.
- Theoretical viral particles per dose were calculated by TEM analysis of harvest media to be <6.9 log10, and the overall reduction of the MuLV demonstrated in this study should be at least 12.9 log to show good safety margins.

- Four viruses that vary in their biophysical properties and structural features were tested for the chromatographic and filtration step.
- Two enveloped viruses were used for the virus inactivation step.

ry	Information	X-MuLV	PRV	Reo-3	MVM	
	Size [nm]	80 – 110	120 – 200	60 – 80	20 – 26	
	Lipid envelope	yes	yes	no	no	
d	Family	Retroviridae	Herpesviridae	Reoviridae	Parvoviridae	
	Genome	ssRNA	dsDNA	dsRNA	ssDNA	
	Resistance	low	medium	Medium	high	
r	Rationale	Non-defective C-type retrovirus	Model for human Herpes virus	Model for Reoviridae	Model for both the human and animal parvoviruses	

The design covers the variation in viral resistance to physical and chemical agents or treatments, and aligned with the ICH guidelines Q5A.

The study design consists of 5 main components:

- Scaled down models for columns and nanofilter were validated (including buffer spiking)
- Viral inactivation kinetic study (1 minute to 14 hours)
- Columns viral clearance capacities were evaluated using fresh columns and columns at the end of lifetime.
- Carry-over runs were performed to analyze cleaning effectiveness.
- Nano filtration process was challenged with both maximal pressure as a worst case, integrated pause and pressure drop, and a pressure ramp.

RESULTS

	Carry-over runs: Detectable						
	Step	Run	infectivity in product pool				
			MuLV	PRV	Reo-3	MVM	
	AIEX	Fresh	No	No	No	1/960*	
	AIEA	Used	No	No	No	No	
	ММС	Fresh	No	No	No	No	
		Used	No	No	No	No	
	CIEX	Fresh	No	No	No	No	
		Used	No	No	No	No	
* 1 colony out of 960 wells							

- MOD-4023 purification process provides a robust **clearance capacity** of ≥23.1 log for enveloped viruses and 9.5 and ≥13.6 log for non-enveloped viruses.
- Low or no infectivity was detected in all carry-over runs suggesting a powerful cleaning in place.

Step	Run	Log10 VRF			
эсер		MuLV	PRV	Reo-3	MVM
Viral	1	≥ 5.4	≥ 5.2	N/A	N/A
Inactivation	2	≥ 4.7	≥ 5.2		
AIEX	Fresh	> 4.1	3.0	2.16	1.9
AIEA	Used	> 4.0	>3.0	0.62	1.2
ммс	Fresh	2.6	6.5	0.42	2.5
IVIIVIC	Used	2.9	4.1	0.86	1.3
CIEX	Fresh	≥ 5.3	5.7	2.42	4.2
CIEX	Used	≥ 4.9	≥ 5.8	2.07	3.8
	1				≥ 7.3
Nanofiltration	2	≥ 6.94	≥ 7.8	≥ 7.46	≥ 7.4
Nanofiltration	3	≥ 6.88	≥ 7.9	≥ 7.64	≥ 7.4
	4				≥ 7.2
Overall reduction	N/A	≥ 23.1	≥ 25.7	9.5	≥ 13.6

CONCLUSIONS

- Valid scale-down models for the chromatographic and filtration steps were successfully established for each process operation.
- MOD-4023 purification process **provides a** robust and highly efficient viral removal capacity.
- A safety margin of ≥ 16.3 log10 was calculated for X-MuLV as model virus. For each other virus type, at least two orthogonal steps were identified which contributes substantially to virus reduction or inactivation.

