Obstructive sleep apnoea syndrome – longitudinal outcomes and improvement predictors after bariatric surgery Rita Bettencourt-Silva^{1,2}, Daniela Magalhães^{1,2}, Pedro Souteiro¹, João Sérgio Neves¹, Sofia Castro Oliveira^{1,2}, Maria Manuel Costa^{1,2}, Marília Bettencourt-Silva³, Leonor Almeida⁴, Marta Drummond^{2,4}, Ana Saavedra^{1,2}, Joana Oliveira^{1,2}, Eva Lau^{1,2}, Joana Queirós^{1,5}, Paula Freitas^{1,2,5}, Flora Correia^{1,5,6}, Davide Carvalho^{1,2,5}, AMTCO group⁵ ¹ Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, E.P.E., Porto, Portugal. ² Faculty of Medicine, University of Porto, Porto, Portugal. ³ Institute of Hygiene and Tropical Medicine, New University of Lisbon, Lisbon, Portugal. ⁴ Department of Pulmonology, Centro Hospitalar São João, E.P.E., Porto, Portugal. ⁵ Multidisciplinary Group for Surgical Management of Obesity, Centro Hospitalar São João, E.P.E., Porto, Portugal. ⁶ Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal # Background - Obesity is a major risk factor for obstructive sleep apnoea syndrome (OSA). - Bariatric surgery has been associated with a decrease in multiple obesity-related comorbidities including OSA. - This study aims to access the OSA evolution in obese patients who underwent bariatric surgery in a tertiary care hospital. ### Methods ### Participants selection process - Retrospective longitudinal study - Population of obese patients - Multidisciplinary Group for Surgical Management of Obesity in our centre - Bariatric surgery between January/2010 July 2014 - Inclusion criteria: polysomnography in our centre; study both before and after surgery; OSA in preoperatively study # Statistical analysis (SPSS Statistics 20.0) - Frequencies and percentages, median, interquartile range (IQR) - Kolmogorov-Smirnov test - Wilcoxon test (signed-ranks), Chi-square test - Pearson correlation, simple and multiple linear regression ## Clinical and anthropometric data - Demographic, anthropometric and polysomnographic data - Apnoea-hypopnoea index (AHI); OSA severity - Absent: AHI < 5 events/hour</p> - Mild: AHI ≥ 5 and < 15 events/hour</p> - Moderate: AHI ≥ 15 and < 30 events/hour</p> - Severe: AHI ≥ 30 events/hour #### OSA treatment - Sleep hygiene measures - Positional therapy - Continuous positive airway pressure - Bi-level non-invasive ventilation (NIV) - Pre-surgery and post-surgery (3-39 months) evaluation ### Results 78 patients 56 female (71.8%) Median 51 years old | CHARACTERISTICS | PRE-SURGERY | POST-SURGERY | p value | |--|------------------------|----------------------------|---------------| | ANTHR | OPOMETRIC DATA | | | | Weight [kg, median (IQR)] | 117.35 (106.00-133.25) | 84.00 (76.15-91.78) | < 0,001 | | Body mass index (BMI) [kg/m², median (IQR)] | 44.04 (40.56-49.17) | 31.62 (28.05-35.57) | < 0.001 | | BMI degree [n (%)] | | 29 (37 | 1) non obese | | Normal | 0 (0) | 2 (2 0) | 6) improvem | | Overweight | 0 (0) | 00 (00 0) | VII degree | | Obesity grade 1 | 0 (0) | 28 (35.9) | | | Obesity grade 2 | 18 (23.1) | 19 (24.4) | | | Obesity grade 3 | 60 (76.9) | 2 (2.6) | < 0.001 | | Waist circumference [cm, median (IQR)] | 127.50 (117.25-138.75) | 101.50 (96.25-109.25) | < 0.001 | | Hip circumference [cm, median (IQR)] | 128.00 (121.00-141.00) | 111.00 (104.00-115.00) | < 0.001 | | POLYSO | MNOGRAPHIC DATA | | | | AHI [events/hour, median (IQR)] | 36.90 (23.40-52.15) | 11.40 (6.63-31.70) | < 0.001 | | OSA severity [n (%)] | | 13 (16 7 | 7%) OSA reso | | Absent | 0 (0) | 49 (46 7) | 7 (47.4%) OSA | | Mild | 6 (7.7) | 00 (00 E) | mprovement | | Moderate | 26 (33.3) | 14 (17.9) | • | | Severe | 46 (59) | 21 (26.9) | < 0.001 | | OSA treatment [n (%)] | | 34 (43 (| 6%) continue | | Sleep hygiene measures | 3 (3.8) | 22 (42 2) | ted with posi | | Positional therapy | 1 (1.3) | 44 /4 /4 /4 \ | way pressure | | Continuous positive airway pressure | 58 (74.4) | 27 (34.6) | | | Bi-level noninvasive ventilation (NIV) | 16 (20.5) | 7 (9) | < 0.001 | | Epworth Sleepiness Scale [score, median (IQR)] | 8.00 (4.00-14.25) | 5.00 (1.75-11.00) | 0.010 | | Mean O ₂ saturation [%, median (IQR)] | 91.00 (88.00-93.00) | 93.55 (92.00-94.78) | < 0.001 | | Minimum O ₂ saturation [%, median (IQR)] | 71.50 (62.00-78.00) | 83.00 (77.25-86.00) | < 0.001 | | O ₂ saturation < 90% [% time, median (IQR)] | 24.90 (8.30-52.50) | 3.20 (0.68-13.45) | < 0.001 | | | 31.40 (19.45-49.05) | 8.55 (4.75-16.93) | < 0.001 | Correlations **AHI** variation BMI reduction (*r*=0.296; *p*=0.009) Total weight loss (*r*=0.289; *p*=0.010) % weight loss (*r*=0.249; *p*=0.028) Pre-surgery AHI (*r*= -0.792; *p*<0.001) Pre-surgery BMI (r=-0.259; p=0.022)Pre-surgery weight (r=-0.267; p=0.018) Adjusted for age and sex Multiple linear regression Predictors of AHI improvement **BMI reduction** (β =1.217; p=0.014) **Weight loss** (β =0.418; p=0.035) **Pre-surgery AHI** (β =-0.840; p<0.001) **Pre-surgery BMI** (β =-1.093; p=0.017) Conclusion Bariatric surgery has a significant beneficial effect on OSA outcome. 63 patients (80.8%) with OSA improvement or resolution 50% suspended positive airway pressure treatment This effect seems to be dependent on weight loss and on the preoperative values of AHI and BMI. References: 1. Sarkhosh K, Switzer NJ, El-Hadi M, et al. The impact of bariatric surgery on obstructive sleep apnea: a systematic review. Obes Surg (2013) 23:414-423. 2. Kotecha BT, Hall AC. Role of surgery in adult obstructive sleep apnoea. Sleep Med Rev (2014) 18:405-413. 3. Asharaflan H, Toma T, Rowland SP, et al. Bariatric surgery or non-surgical weight loss for obstructive sleep apnoea? A systematic review and comparison of meta-analyses. Obes Surg (2015) 25:1239-1250. 5. Bae EK, Lee YJ, Yun CH, Heo Y. Effects of surgical weight loss for treating obstructive sleep apnea. Sleep Breath (2014) 18:901-905. Obesity Rita Bettencourt-Silva