Liposomal prednisolone promotes macrophage necroptosis in experimental atherosclerosis: does this explain atherogenesis in Cushing’s disease?

Dominik M. Schultz,1,2, M. van der Vaart,3 Svenja Meiler,1 Jun Tang,2 Kang He Zheng,1 Jan van den Bossche3, Tom Seijkens,3 Matthias Laudes,2 Menno de Winther1, Esther Lutgens1, Josbert Metsealet1, Willem J.M. Mulder1,4, Geesje M. Daalling-Thien1, Erik S.G. Stroes1, Anouk A. J. Harmers1

1 Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
2 Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany and Cluster of Excellence Inflammation at Interfaces, Christian-Albrechts-University, Kiel, Germany.
3 Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
4 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
5 Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.

Poster presented at: ECE 2016.

DOI: 10.3252/pso.eu.18ECE.2016

Cardiovascular Endocrinology and Lipid Metabolism

Rationale: Liposomal nanoparticles loaded with prednisolone (LN-PLP) have previously been reported to accumulate in macrophages of rabbits’ atherosclerotic lesions, and rapidly reduce arterial wall inflammation. In patients with atherosclerotic disease, accumulation of LN-PLP in macrophages of atherosclerotic plaques has been demonstrated, but arterial wall inflammation reduction was not observed.

Objective: To evaluate the effect of LN-PLP’s effect on inflammatory macrophages in a mouse model of atherosclerosis.

Methods and Results: In low-density lipoprotein receptor knockout (LDLr−/−) mice on high-fat diet, we show that LN-PLP accumulates in plaque macrophages and biweekly injections at 10mg/kg induces (i) enhanced monocyte recruitment to the plaque, leading to (ii) increased macrophage content, more advanced plaque stages, and larger necrotic core sizes after 8 weeks of treatment. *In vitro*, we observed that both murine and human macrophages polarize into a lipophilic phenotype following LN-PLP exposure, illustrated by increased lipid accumulation, endoplasmatic reticulum (ER) stress and necroptosis.

Conclusion: These findings indicate that local exposure to the anti-inflammatory compound prednisolone, can elicit a pro-atherogenic, lipotoxic effect in plaque macrophages. This might explain atherogenesis in patients with Cushing’s disease.

Efficacy: monocyte recruitment

Efficacy: gene expression

Efficacy: plaque size

in vitro: lipotoxicity and necroptosis

Contact:

name: Dominik M. Schultz
address: UKSH, Campus Kieler, Internal Medicine I, Kiel, Germany
e-mail: dominik.schultz@uksh.de

Wissen schafft Gesundheit