SCANNING ELECTRON MICROSCOPY OF THE RAT ADRENAL GLAND AFTER SURGICAL LASER EXPOSURE

Konstantin G. Kemoklidze
Yuri K. Alexandrov
Natalia A. Tiumina
Denis E. Pukhov

Correspondence:
Konstantin G. Kemoklidze,
Department of Histology, Cytology and Embryology of Yaroslavl State Medical University,
Russia, 150047, Yaroslavl, Chkalova, 27A, 28
1. Department of Histology, Cytology and Embryology of Yaroslavl State Medical University, Yaroslavl, Russia; 2. Department of Surgical Diseases of Pediatric Faculty of Yaroslavl State Medical University, Yaroslavl, Russia; 3. Micro- and Nanosystems Diagnostic Laboratory of Yaroslavl Branch of the Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl, Russia. Tel.: +7-905-135-20-42 Fax: +7 (4852) 72-91-42 Email: k_g_k@mail.ru

INTRODUCTION
The increasingly widespread use of lasers in surgery explains significant interest in studying this method. Meanwhile, reaction of the tissues and organs to the laser damage remains still insufficiently studied (Welch & van Gemert 2011). Adrenal gland in this regard is no exception: its laser surgery has more than a quarter-century history (Gambarin et al. 1988), but the detailed fundamental studies of the reaction of the adrenal gland to laser damage have appeared only recently (Kemoklidze & Tiumina 2013a, 2013b, 2014; Kemoklidze et al. 2013). Information in the scientific literature on the assessment of the effects of laser effects on adrenal glands with a scanning electron microscope (SEM) is missing. That is the purpose of the present work.

PURPOSE
The study evaluated the effects of laser ablation of adrenal glands and results of regeneration using low-vacuum scanning electron microscopy for modeling the effects of laser ablation on pathological focus in the adrenal glands.

MATERIALS and METHODS
A study performed on the rats (n=19, male, Wistar line) with weighing 335.3 ± 24.9 g. At 14 of them (control 5 intact rat) under general anesthesia was performed local laser ablation part of left adrenal gland. For damaged used surgical Laser apparatus "Lami" (pic.1) with standard options for parenchymatous organs: point action quartz with polyamide-coated optics (pic.2) with a diameter of 400 μm (wavelength-1020 nm radiation power-2.5 watts). Energy exposure amounted to 70 D J. The adrenal glands were researched without the laser exposure, immediately after it and 1 month later.

RESULTS
The shape of the intact rat adrenal glands is a prolate spheroid of 10.3 ± 2.5 mm³ in volume and with uniformly convex matte surface (pic.3). Immediately after exposure occurs laser ablation crater with rough edges and melted surface (pic.4). It is penetrated by equidistant pores which are footprints of blood vessels. Beneath of the surface are numerous vaporization bubbles. Around the crater the surface wrinkles and sags due to decreased ability to retain water. Through 1 month after the laser damages in the affected area is determined by a scar (pic.5). Among the big bundles of collagen fibers determined by amorphous chunks of coal and caverns. Tissues with normal structure are detected near to the scar, both inside of the adrenal gland and the tissues around her. This wrinkling and the sagging are absent. The undamaged part of organ has retained the previous shape and structure without hypertrophy, the damaged part the adrenal gland reduced (pic.6).

CONCLUSION
The nature of the regeneration processes indicates a low probability of a relapse after the destruction of a pathological focus in the adrenal after the surgical laser ablation.