Glucagon-like-peptide 1 Receptor imaging specifically localizes insulinomas in patients with Multiple Endocrine Neoplasia Type 1 (MEN-1)

Kwadwo Antwi1, Melpomeni Fani1, Tobias Heye1, Guillaume Nicolas1, Elmar Merkle1, Francois Pattou2, Ashley Grossmann3, Philippe Chanson4, Jean Claude Reubi2, Beat Gloor2, Damian Wild5, Emanuel Christ6 *shared last authors

1Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Switzerland
2Department of endocrine surgery, Lille University Hospital, France
3Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
4Division of Endocrinology, Hospital Bicetre Paris XI, France
5Division of Experimental Pathology, Department of Pathology, University of Bern, Switzerland
6Department of Visceral Surgery, University Hospital of Bern, Switzerland
7Division of Diabetology, Endocrinology, and Metabolism, Inselspital Bern, University Hospital and University of Bern, Switzerland

Background
• Surgery is often the only treatment option that can effectively treat patients with insulinomas in MEN-1.
• The surgical intervention should be limited as surgery can not cure patients with MEN-1.
• It is mandatory to correctly localize insulin secreting tumors from other neuroendocrine tumors.
• Benign insulinomas express Glucagon-Like Peptide-1 Receptor (GLP-1R) in nearly 100% of the cases and at a high density.
• Targeted GLP-1R imaging has been shown to be a valid and non-invasive tool to localize these small tumors.
• It is unknown, whether GLP-1 R imaging is useful in the context of MEN-1.

Aim
We aimed at assessing the utility of GLP-1 receptor (GLP-1R) imaging in the identification of insulinomas from other pancreatic lesions in the context of MEN-1.

Methods
6 patients with proven endogenous hyperinsulinemic hypoglycemia and neuroglycopenia in the context of MEN-1 were included. All patients received abdominal SPECT/CT after the injection of a standard activity of 111In-DOTA-exendin-4. Four patients underwent additional imaging with a standardized contrast media enhanced 3T MRI and a 68Ga-DOTA-exendin-4 PET/CT scan as part of the study. Standard of comparison was the histological diagnosis after surgery.

Results
• Six patients (4 females and 2 males) were included (age range 18–49 years).
• Until today 5 of 6 patients have been operated.
• Conventional imaging revealed a total of 11 suspicious pancreatic or peripancreatic lesions.
• PET/CT and SPECT/CT imaging together revealed 6 lesions with a high expression of Glucagon-like Peptide-1 receptors (GLP-1R) suspicious for an insulinoma.
• Based on the GLP-1R imaging all 6 lesion were surgically removed, histopathology confirmed the diagnosis of a benign insulinoma and all 5 patients presented with normalized blood sugar levels after surgery.

Conclusion
In MEN-1 patients, insulin secreting pancreatic NET express GLP-1R in a high incidence and density. Adding GLP-1R imaging to conventional imaging is a helpful tool in differentiating insulinomas from other pancreatic islet tumors expressed in MEN-1 patient and may guide the surgical intervention.

Figures: Ce 3T MRI, 111In-Octreoscan SPECT/CT and 68Ga-DOTA-exendin-4 PET/CT in one patient with MEN-1

Figure 1: 3T MRI revealed 4 lesions in the pancreas. Differentiation between insulinomas and other neuroendocrine tumors is not possible with MRI

Figure 2: 111In-Octreoscan SPECT/CT shows a lesion with somatostatin receptor (SSTR) expression in the cranial portion of the pancreatic head (A) and another SSTR positive lesion in the ventral portion of the pancreatic tail (B). Histopathology: (A) Gastrinoma (B) Ppoma

Figure 3: 68Ga-DOTA exendin-4 PET/CT shows a lesion with strong GLP-1R expression in the uncinate process (A) and another GLP-1R positive lesion in the dorsal portion of the pancreatic tail (B). Histopathology: (A) Insulinoma (B) Insulinoma