Evidence for better response to somatostatin analogue treatment in acromegalic patients treated with metformin

M. Winkelmann, Geraedts, K. Lucia1, Sylvere, Michael Buchfelder2, Ulrich Renner1, Günter K. Stalla1, Marily Theodoropoulou1

1MPI of Psychiatry, RG Clinical Neuroendocrinology, 80804 Munich, Germany
2Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, 80336 Munich
3University of Erlangen, Neurosurgical Clinic, Schwabachanlage 691054 Erlangen, Germany

Background

- Surgery: 60% cure
- Medical therapy (somatostatin analogs): 40-50% cure, 40% resistance
- SA+DA
- GHR antagonist
- repeat surgery/radiotherapy

Comorbidities:
- Cardiomyopathy
- Hypertension
- Coronary artery disease
- Hypopituitarism
- Diabetes mellitus

Cohort presentation

<table>
<thead>
<tr>
<th>Therapy modalities</th>
<th>Total</th>
<th>Primary therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>49</td>
<td>23</td>
</tr>
<tr>
<td>SSA</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>N=49</td>
<td>N=25</td>
<td>N=14</td>
</tr>
<tr>
<td>N=35</td>
<td>N=11</td>
<td>N=14</td>
</tr>
<tr>
<td>N=49</td>
<td>N=11</td>
<td>N=14</td>
</tr>
</tbody>
</table>

Response to treatment with SSA

- 2DM
 - N=12
- Hypopituitarism
 - N=18

Metformin treatment correlates with improved response to SSA treatment

No correlation between age, gender, disease duration, other treatment modalities and change of IGF-1 after SSA treatment:
- Age p=0.183
- Gender p=0.397
- Disease duration p=0.686
- Hydrocortisone p=0.173
- Testosterone p=0.085
- L-thyroxine p=0.721

No correlation between IGF-1 lowering response to SSA and substitution treatment with hydrocortisone, testosterone, thyroxin (variance inflation factor <3)

Metformin reduces GH synthesis in vitro

In vitro experiments in GH3 cells

<table>
<thead>
<tr>
<th>Metformin (nM)</th>
<th>GH (ng/ml)</th>
<th>CT</th>
<th>Met 500µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Human acromegalic tumors in vitro (n=7)

<table>
<thead>
<tr>
<th>Metformin (nM)</th>
<th>GH (ng/ml)</th>
<th>CT</th>
<th>Met 500µM +Oct 1nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Summary

- The aim of this study was to analyze the impact of the concomitant antidiabetic treatment with metformin and hormone replacement on the response to SSA
- Data showed no correlation between SSA (p=0.71) and transsphenoidal surgery (p=0.541) on the incidence of pituitary insufficiency
- Regression analysis showed no correlation between IGF-1 lowering response to SSA and substitution treatment with hydrocortisone, testosterone, l-thyroxin (VIF <3)
- No correlation between age, gender, disease duration, other treatment modalities and change of IGF-1 after SSA treatment
- Linear regression analysis showed correlation between metformin therapy and change of IGF-1 levels after SSA treatment (p=0.031; R-square change: 0.135; R-square: 0.321)
- In vitro investigation showed that metformin enhances GH-suppressive effect of octreotide
- These preliminary observations indicate that hormone replacement does not affect SSA response, but metformin treatment improves SSA response in terms of IGF-1 reduction