Systemic epidermal growth factor receptor-targeted gene delivery using the theranostic sodium iodide symporter (NIS) gene in an advanced orthotopic tumor model

Sarah Urnauer, Stephan Moritz, Andrea M. Müller, Rosel Oos, Janette Carlsen, Peter Bartenstein, Ernst Wagner, Christine Spitzweg

Introduction
The well characterized sodium iodide symporter (NIS) in its dual function as reporter and therapy gene represents an outstanding tool to target different cancer types allowing non-invasive imaging of functional NIS expression and therapeutic radionuclide application. We recently reported induction of tumor-selective accumulation and therapeutic efficacy of radiiodide after systemic non-viral epidermal growth factor receptor (EGFR)-targeted NIS gene delivery in a subcutaneous hepatocellular cancer (HuH7) xenograft tumor model. As a next step towards clinical application, we are now investigating tumor specificity and transduction efficiency of EGFR-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced orthotopic tumor model.

Materials and Methods
- Orthotopic liver cancer model: HuH7 cells were injected directly into the liver leading to the development of orthotopic liver tumors.
- Polymers based on linear polyethyleneimine (LPEI) and polyethylene glycol (PEG) were coupled to the synthetic peptide GE11 as an EGFR-specific ligand (LPEI-PEG-GE11) and complexed with human NIS DNA.
- Imaging studies: investigation of vector biodistribution and functional NIS expression measured by tumor specific accumulation of 124I or 18F-tetrafluoroborate (18F-TFB) after application of 10 MBq of the respective radionuclide.
- Ex vivo biodistribution: 24 hours after polyplex administration, mice received 18.5 MBq 124I. 3h later, animals were sacrificed, organs dissected and measured in a gamma-counter.

Results
PET-imaging
24h after intravenous injection of LPEI-PEG-GE11/NIS, mice with orthotopic HuH7 liver carcinomas showed high tumoral levels of functional NIS protein expression detected by either 124I or 18F-TFB PET-imaging. In contrast, far lower uptake levels were detected in animals treated with untargeted LPEI-PEG-Cys/NIS polyplexes confirming receptor-mediated gene-transfer. The two tracers, 124I-PET and 18F-TFB, which exhibit different pharmacodynamic and pharmacokinetic parameters, were compared: 124I was found to be less sensitive and resulted in images with lower resolution compared to images obtained with the novel tracer 18F-TFB. The higher resolution of 18F-TFB allows a more precise and exact tumor localization for quantification of regions of interests.

Ex vivo biodistribution
3h after application of 124I, EGFR-targeted polyplex biodistribution and tumor specific NIS expression in orthotopic liver cancer was examined. LPEI-PEG-GE11/NIS-treated mice showed significant tumoral accumulation of iodide, whereas injection of control vectors (LPEI-PEG-Cys/NIS) as well as pretreatment with the NIS-specific inhibitor perchlorate resulted in significantly lower iodide uptake levels.

Summary and Conclusion
- In vivo 124I- and 18F-TFB-PET imaging revealed significant tumor-specific tracer accumulation
- Ex vivo biodistribution analysis confirmed EGFR-targeted vector biodistribution, as well as tumor-selective NIS-mediated iodide uptake.
- In conclusion, our preclinical data confirm the enormous potential of EGFR-targeted synthetic polymers for systemic NIS gene delivery in an advanced orthotopic tumor model and open the exciting prospect of NIS-mediated radionuclide therapy in advanced disease.