Searchable abstracts of presentations at key conferences in endocrinology
Endocrine Abstracts (2006) 11 P717

ECE2006 Poster Presentations Reproduction (80 abstracts)

11β-hydroxysteroid dehydrogenase (11βHSD) activities in porcine granulosa cells from ovarian follicles and cysts

N Sunak 1 , V Sharp 2 , LR Abeydeera 3 , LM Thurston 2 & AE Michael 4


1University College London, London, United Kingdom; 2Royal Veterinary College, London, United Kingdom; 3Sygen International, Kentucky, United States; 4St George’s, University of London, London, United Kingdom.


In the ovary, glucocorticoids are metabolised by 11βHSD enzymes. The bi-directional 11βHSD1 enzyme usually acts as an NADPH-dependent 11-ketoreductase to regenerate cortisol (F) from circulating cortisone (E), while 11βHSD 2 inactivates F using NAD+ as cofactor. Having isolated endogenous inhibitors of 11βHSD1 from porcine follicular fluid (pFF) and ovarian cysts, the aims of this study were to establish whether 11βHSD enzymes interconvert F and E in porcine granulosa cells (GCs) and, if so, whether this changes during follicle growth.

Porcine GCs were isolated from small, medium and large antral follicles (2–4 mm, 4–8 mm and >8 mm in diameter, respectively), and from spontaneous ovarian cysts (25–40 mm diameter) (n=5 in each group). 11βHSD activities were measured over 4 h at 37.5 °C in primary cell cultures and in GC homogenates using radiometric conversion assays. Intact GCs were incubated with either 3H-F or 3H-E (100 nM) in serum-free medium supplemented with 10 ng/ml insulin, 10 ng/ml IGF-1, 5 μg/ml transferrin, 0.04 ng/ml sodium selenite, 100 nM androstenedione and 1 ng/ml FSH. Cell homogenates were incubated either with 100 nM 3H-F plus 4 mM NADP+/NAD+, or 100 nM 3H-E plus 4 mM NADPH ±10 mM glucose-6-phosphate.

In intact GCs, net oxidation of F increased with follicle diameter (from 0.8±0.3 pmol in GCs from small follicles to 2.1±0.5 pmol in dominant follicles) but was significantly decreased in ovarian cysts (0.7±0.1 pmol; P<0.05 versus large antral GCs). In GC homogenates, addition of both NADP+ and NAD+ increased F metabolism, and both activities increased with follicle diameter. There was no significant metabolism of 3H-E either in intact cells or GC homogenates, irrespective of follicle size or added cofactors. We conclude that porcine GCs can inactivate F using both NADP+-dependent 11βHSD1 and NAD+-dependent 11βHSD2 enzymes, but that 11βHSD1 appears to lack any 11-ketosteroid reductase activity in these ovarian cells. Furthermore, rates of F oxidation are lowest in rapidly growing small antral follicles and in ovarian cysts.

This work was supported by a BBSRC-Sygen CASE studentship.

Volume 11

8th European Congress of Endocrinology incorporating the British Endocrine Societies

European Society of Endocrinology 
British Endocrine Societies 

Browse other volumes

Article tools

My recent searches

No recent searches.