

Radioactive lodine Therapy in Papillary Thyroid Carcinoma Staged as T1

Pedro Marques, Daniel Macedo, Joana Simões Pereira, Margarida da Silva Vieira , Valeriano Leite, Maria João Bugalho

Endocrinology Department, Portuguese Institute of Oncology, Lisbon

INTRODUCTION

• 49% of the rising incidence of papillary thyroid carcinoma (PTC) consists of cancers measuring ≤ 1 cm and 87% consists of cancers measuring ≤ 2 cm.¹

• ¹³¹I therapy in patients with $PTC \le 2$ cm and without extrathyroidal extension (T1) depends on multifactorial analysis: age, multifocality, histological criteria, lymph node or systemic metastases.

•AIMS: Analyze PTC-T1 and compare groups treated with surgery and ¹³¹I vs only surgery.

METHODS

- Retrospective analysis of clinical files of PTC-T1 patients diagnosed between 2002-2006 and followed in the Endocrinology Department.
- All cases included had confirmed histopathological diagnosis.
- Cases were identified through the South Regional Cancer Registry and the database of the Endocrinology Department. Data was analysed using SPSS20[®].

RESULTS

N(%)	PTC T1	T1a	T1b
	(N=178)	(N=89)	(N=89)
Females	153 (86%)	75 (84,3%)	78 (87,6%)
Mean age (y)	47,2 (±14,3)	47,9 (±15,2)	46,6 (±13,4)
Incidental diagnosis	69 (38,8%)	49 (55,1%) 20 (22,5%)	
Mean tumoral diameter (cm)	1,2 (±0,5)	0,73 (±0,3)	1,62 (±0,3)
Multifocal	<u>58 (32,6%)</u>	27(30,3%)	31(34,8%)
High risk variants (tall cells,trabecular, solid, sclerosant)	<u>8 (4,5%)</u>	1 (1,1%)	7 (7,9%)
Angioinvasion	<u>9 (5,0%)</u>	2 (2,2%)	7 (7,9%)
Surgical margins-R0	168 (94,4%)	88 (98,9%)	80 (89,9%)
Lymph node met.	<u>30 (16,9%)</u>	13 (14,6%)	17 (19,1%)
Lung metastases	<u>4 (2,2%)</u>	2 (2,2%)	2 (2,2%)
LOW Risk Stratification ATA ⁽¹⁾	123 (69,1%)	69 (78%)	\$ 54 (61%)
Surgeries to recurrent / persistent disease (N)	12	7	5
¹³¹ I therapy realized	109 (72,2%)	38 (42,7%)	71 (79,8%)
Number ¹³¹ I therapies	132	46 🔆 86	
Persistent/recurrent disease [BED/SED]	14 (7,9%) [4/10]	5 (5,6%) [1/4]	9 (10,1%) [3/6]
Mean follow-up (mth)	71 (±23)	68 (±24)	74 (±21)

N (%)	Surgery + ¹³¹ I (N=109)	Only Surgery (N=69)
Females	94 (86,2%)	59 (85,5%)
Mean age (y)	47,6 (±14,7)	46,7 (±13,8)
Incidental diagnosis	34 (31,2%) 😽	36 (52,2%)
T1a T1b	38 (42,7%) 71 (79,8%) ≯	51 (57,3%) 18 (20,2%)
Mean tumoral diameter (cm)	1,37 (±0,5) 🛠	0,88 (±0,5)
Multifocal	48 (44,0%) 😽	10 (14,5%)
High risk variants (tall cells,trabecular, solid, sclerosant)	8 (7,4%) 😽	0
Angioinvasion	9 (8,3%)	0
Surgical margins-R1	8 (7,3%)	2 (2,9%)
Lymph node met.	29 (26,6%) 😽	1 (1,4%)
Lung metastases	4 (3,7%)	0
Persistent/recurrent disease [BED/SED]	14 (12,9%) [4/10]	0

Age category	≤45 years: 112,8	
	>45 years: 112,7	p=0,403
Gender	M: 104	
	F: 116	p=0,289
Diagnosis	Incidental: 120	
	Non-incidental:107	p=0,19
T1	T1a: 118	
	T1b: 108	p=0,388
Foci	Unifocal: 111	
	Multifocal: 112	p=0,566
Surgical	R0: 118	
margins	R1: 88	<u>p=0,000</u>
Angioinvasion	No: 116	
	Yes: 107	p=0,629
N1	No: 119	
	Yes: 86	<u>p=0,013</u>
M1 (lung met.)	No: 118	
	Yes: 0	<u>p=0,000</u>

.....

Ħ

11 11

11

 Table 3: Mean free-disease survival time (months)

 according with different factors

Table 2: Characteristics of PTC-T1 submitted to surgery plus 1^{31} vs isolated surgery (comparative analyzes was included: statistical significance, meaning p <0.05 is represented by

> European Society of Endocrinology

Table 1: Clinical, histological, staging and management features of PTC-T1 cases (comparative analyzes T1a vs T1b was included: statistical significance, p <0.05, is represented by in [BED-biochemical evidence of disease / SED – structural evidence of disease)

2013

CONCLUSIONS

> Generally, PTC-T1 are associated with good prognosis (non-evidence of disease in 92,1%).

- Some PTC-T1 showed aggressive clinicopathological features. Lymph node/lung metastases or positive surgical margins are likely to negatively affect the prognosis.
- > In the absence of metastases and/or aggressive histological criteria, the benefit of 131 I therapy is doubtful.
- > Tumor dimensions do not condition prognosis. T1b tumors are more often associated with aggressive histological criteria nonetheless without significant

Copenhagen

impact in free-disease survival.

Cooper, D; Doherty, G; Haugen, B; Kloos R; et al. Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer. 2009. Thyroid. 19(11): 1167-1214.
 American Joint Commitee on Cancer (AJCC), Cancer Staging Manual, Seventh Edition, 2010, Springer, New York(3)
 Schwartz, C; Bonnetain, F; Dabakuyo, S; et al. Impact on Overall Survival of Radioactive Iodine in Low-Risk Differentiated Thyroid Cancer Patients. J Clin Endocrinol Metab. May 2012. 97(5): 1526-1535.

ECE

