Clinical and biochemical criteria for the prognosis of small medullary thyroid carcinomas

¹KaterinaSaltiki, ¹GiannaRentziou, ¹VasilikiVasileiou, ¹AnastasiaAthanasiadou, ¹EleniAnastasiou, ¹MariaAlevizaki

¹Endocrine Unit, Dept Medical Therapeutics, Alexandra Hospital, Athens University School of Medicine, Athens, Greece

Introduction - Aim of the study

- The prevalence of small medullary thyroid carcinomas (sMTCs, ≤1.5cm) has increased during recent years.
- ✓ They are frequently diagnosed as incidental findings in surgical and occasionally in autopsy specimens.
- As their clinical course varies, various prognostic risk factors for their biological behaviour have been repeatedly investigated.

We examined whether tumor size is a predictor of clinical behaviour of these tumours.

Patients - Methods

204 MTC patients underwent total thyroidectomy.

119 patients had sMTC (≤1.5 cm)

- Mean age at diagnosis
 41.33±17.15 yrs (range 5-78)
- 37% men (n=44)
- Mean time of follow-up:6.16±5.9 yrs (range 0.9-34)
- 47.1% familial

Patients were classified according to tumor size (cm) in:

- 1. group1: 0.1-0.5 (n=25, 24.8%)
- 2. group2: 0.6-0.8 (n=22, 21.8%)
- 3. group3: 0.8-1.0 (n=23, 22.8%)
- 4. group4: 1.1-1.5 (n=31, 30.7%)

Clinical and biochemical parameters at diagnosis and during follow-up were recorded.

Results

- ✓ The demographic characteristics are shown in table 1.
- Familial cases did not differ from sporadic ones concerning stage at diagnosis or outcome.
 Cervical lymph node and capsular invasion were
- Cervical lymph node and capsular invasion were more frequent with increasing tumor size (fig 1).
- ✓ No distant metastases at diagnosis were found in the four groups (fig 1).
- ✓ Preoperative and postoperative calcitonin levels were positively associated with tumour size (p<0.001).
- The stage at diagnosis was more advanced and the outcome less favourable with increasing tumour size (p<0.004, fig 2, 3).
- Group 1 and 2 patients were more frequently cured (group1: 88%, group2: 86.7%, group3: 72.7%, group4: 51.7%, p=0.009).
- ✓ The 10year probability of lack of progression of disease according to tumour size did not differ significantly between the 4 groups (group1: 96%, group2: 100%, group3:100%, group4: 81.5%, x2=4.61, p=0.2, Log Rank, fig 4).
- ✓ It differed marginally between patients with tumour 0.1-1.0 and 1.1-1.5cm (98.5%, 81.5%, x2=4.15, p=0.042, log rank, fig 5).
- In the <u>subgroup of microMTCs</u> (≤1.0 cm) patients with microMTC ≤0.8 had less advanced stage at diagnosis compared to 0.9-1.0cm (stage I&II: 89.4% vs 66.7%, stage III: 8.5% vs 33.3% and stage IV: 2.1% vs 0%, p=0.032, table 2).
- No differences in the outcome were found between microMTC subgroups.

	Largest tumor diameter (cm)				
	Group1 0.1-0.5 n=30	Group 2 0.6-0.8 n=31	Group 3 0.9-1.0 n=26	Group 4 1.1-1.5 n=32	Р
Age (yrs ±SD)	32.83±17	45.84±14	45.08±18	41.88±16	0.011
Sex: males (%)	40%	32.3%	46.2%	31.3%	0.6
Family history: sporadic (%)	29.6%	54.8%	52.2%	46.7%	0.3
Years of follow up (±SD) Median (IQR)	5.0±5.94 2 (8.5)	3.33±4.97 1 (3)	4.9±5.12 3 (4)	7.05±6.8 5 (9)	0.12

Fig 1. Clinical and histological characteristics according to the tumour size (≤1.5 cm)

Fig 2. Stage at diagnosis according to the tumor size (≤1.5 cm)

Fig 3. Outcome of the disease according to the tumour size of sMTCs (≤1.5 cm)

Fig 4. 10-year probability of lack of progression of disease according to the tumour size (0.1-1.5 cm)

Fig 5. 10-year probability of lack of progression of disease according to the tumour size (0.1-1.0 and 1.1-1.5 cm)

Table 2. Results in the subgroup of patients with micro MTC (≤1.0 cm)

	Largest tumor diameter (cm)			
	0.1-0.8 cm	0.9-1.0 cm	Р	
Stage at diagnosis: I+II III IV	90.2% 8.2% 1.6%	70.8% 29.2% 0.0%	0.04	
Outcome: Remission Stable Progression	82.5% 14% 3.5%	66.6% 33.3% 0.0%	0.2	

Conclusions

- Within the group of small MTCs (≤1.5 cm) the probability of 10yr-disease progression slightly increases in those with tumour size >1.0 cm.
- In the subgroup of microMTCs (≤1.0 cm) the stage is less advanced in tumours ≤0.8cm, while the outcome is similar to those with tumour size 0.9-1.0cm.
- Thus tumour size may be of clinical importance for the progression of disease only in patients with MTCs >1cm.