EVALUATION OF TWO ROUTINELY USED 25OHD ASSAYS AND SERUM VARIABLES IN PATIENTS ON DIALYSES
Z. Lőcsei1, L. Kovács1, D. Balogh5, A. Szijártó5 and B. Kálmán2, G.L. Kovács4,5, E. Toldy3,5
1st Department of Medicine1, Center for Molecular Medicine2, Central Laboratory3 Markusovszky Teaching Hospital of County Vas, Szombathely and Institute of Laboratory Medicine4, Institute of Diagnostics5, University of Pécs, Hungary

Background
The total 25-hydroxy-vitamin-D (t-25OHD) level can be routinely assessed by various methods and reflects vitamin D intake. Results are influenced by the serum variables affected by dialyses.

Aims: to examine t-25OHD and bioavailable vitamin D (bio-25OHD) by two most frequently used methods in patients on peritoneal- (PD) and hemodialysis (HD).

Investigated cases

We studied 37 HD (64±15 years, 17 females, 20 males) and 36 PD (63±18 years, 15 females, 21 males) patients without vitamin D substitution.

Methods

All 73 sera were analyzed for t-25OHD by two assays with different principles.
In addition the following biomolecules were measured: PTH biointact (Bio-PTHi) by immunoassay (ECLMA, Roche), vitamin D binding protein (DBP) by turbidimetry (Dako), and total protein (TP), albumin (Alb) and calcium (Ca) by colorimetry (Roche, Modular).
The bio-25OHD values were calculated (Vermeulen et al. 1999, Bhan et. al. 2012) The cutoff values for evaluation of Vitamin D supply or t-25OHD and bio-25OHD are summarized in the table.

<table>
<thead>
<tr>
<th>25OHD fractions</th>
<th>LIA</th>
<th>PBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-25OHD</td>
<td>>75</td>
<td>>75</td>
</tr>
<tr>
<td>bio-25OHD</td>
<td>>6.1*</td>
<td>>6.4*</td>
</tr>
</tbody>
</table>

* calculated from 64 healthy volunteers with >75 nmol/l t-25OHD, at 2.5 percentile.

Results

The frequency of undetectable t-25OHD level was higher by PBA (29%) than by LIA (1.4%).

All investigated cases had suboptimal vitamin D supply by both t-25OHD assays. However, the frequency of suboptimal supply decreased on the bases of bio-25OHD levels especially in HD.

Values of t- and bio-25OHD were significantly lower in PD than in HD, while Bio-PTHi levels were significantly lower in HD than in PD.

Albumin levels were lower in PD than in HD, but DBP levels were higher in PD than in HD (p<0.05).

Positive correlations were observed with both methods between t-25OHD and albumin levels in PD only (PBA: r=0.36; p<0.05; LIA: r=0.48; p<0.01).

Negative correlations were observed between Bio-PTHi and t-25OHD levels (PBA: r=-0.39; LIA: r=-0.42; p<0.05) in HD only; negative correlations observed between Bio-PTHi and bio-25OHD were similar in both HD and PD (LIA: PD r=-0.40, HD r=-0.54, p<0.01; PBA: PD r=-0.49, HD r=-0.44).

The correlations of t-25OHD levels assessed by LIA and PBA were different (HD: r=0.89; p<0.001; PD: r=0.47, p<0.01), but correlations of bio-25OHD values were similar in both groups (HD: r=0.85; PD: r=0.83, p<0.001).

Conclusions

- Assessment of vitamin D supply by LIA and PBA is influenced by lower albumin levels especially in PD.
- Estimation of bio-25OHD is more suitable in PD, while t-25OHD is a reliable measure with either method in HD.