EFFECTS OF PRENATAL ANTIANDROGEN EXPOSURE ON HSD3B EXPRESSION IN THE FETAL PORCINE GONADS

Katarzyna Knapczyk-Stwora and Malgorzata Grzesiak
Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland

INTRODUCTION
Hormonal disruption during fetal period induces abnormalities in the developing reproductive system, which may have far-reaching consequences. 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (HSD3B) is a key enzyme catalyzing an essential step in the formation of all classes of steroid hormones. There is growing evidence that steroid hormones modulate HSD3B expression. Previously, we have reported the presence of androgen receptors in the fetal porcine gonads denoting the role of androgens during gonadal development. Thus, the aim of the present study was to determine the effect of androgen deficiency during late prenatal period on HSD3B expression in the fetal porcine gonads.

MATERIALS & METHODS

For each flutamide-exposed group, a respective control group was used and control animals were treated with corn oil in a manner similar to the flutamide treated pigs. HSD3B immunolocalization was performed using rabbit polyclonal anti-mouse HSD3B antibody (provided by prof. A. H. Payne from Stanford University). To assess HSD3B mRNA expression real-time PCR was carried out using the TaqMan Gene Expression Assay (Applied Biosystems). To assess similar to the flutamide treated pigs. HSD3B immunolocalization was performed using rabbit polyclonal anti-mouse HSD3B antibody (provided by prof. A. H. Payne from Stanford University). To assess HSD3B mRNA expression real-time PCR was carried out using the TaqMan Gene Expression Assay (Applied Biosystems).

RESULTS

For each flutamide-exposed group, a respective control group was used and control animals were treated with corn oil in a manner similar to the flutamide treated pigs. HSD3B immunolocalization was performed using rabbit polyclonal anti-mouse HSD3B antibody (provided by prof. A. H. Payne from Stanford University). To assess HSD3B mRNA expression real-time PCR was carried out using the TaqMan Gene Expression Assay (Applied Biosystems).

SUMMARY OF RESULTS
In testes from control and flutamide-exposed fetuses, HSD3B was immunolocalized in Leydig cells (Fig. 1A). Following flutamide treatment, the intensity of immunostaining was lower on GD108 vs. control (Fig. 1B). Flutamide administration resulted in increased HSD3B mRNA expression on GD90 and decreased HSD3B mRNA expression on GD108 vs. respective controls (Fig. 3A). In ovaries from control and flutamide-exposed fetuses, HSD3B was immunolocalized in granulosa cells of forming follicles (Fig. 2A). Following flutamide treatment, the intensity of immunostaining was increased on GD90 vs. respective controls (Fig. 2B). However, on GD108, flutamide treatment led to decreased HSD3B mRNA expression (Fig. 3B), while no changes in the intensity of immunostaining were observed (Fig. 2B).

CONCLUSIONS
Diminished androgen action during late gestation induces changes in HSD3B expression in porcine fetal gonads, which may result in functional changes in Leydig and granulosa cells. However, it seems that androgens exert diverse biological effects depending on the gestational period.

Supported by Iuventus Plus grant (IP2011 024571) of the Polish Ministry of Science and Higher Education.