

# **Gender determines ACTH recovery after** experimental hypercortisolemia in older individuals

Animesh Sharma, M.B.B.S.<sup>1</sup>, Paul Aoun, D.O., PhD.<sup>2</sup>, Jean Wigham R.N.<sup>1</sup>, Sue Weist R.N.<sup>1</sup>, Johannes **Veldhuis M.D.**<sup>1</sup>; <sup>1</sup>Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, U.S.A. <sup>2</sup> Palm Beach Diabetes and Endocrine Specialists, West Pam Beach, FL, U.S.A

#### Introduction

- Available clinical literature raises the possibility ٠ that stress-responsive mechanisms differ by gender, especially in older individuals
- In the rodent, female sex (and estradiol) and • male sex (and testosterone) respectively potentiate and attenuate stress responses
- However, in human subjects, gender plays an equivocal role in regulating the hypothalamicpituitary-adrenal (HPA) axis, possibly due to interactions between gender and age as well as gender and stressor type

### **Table 1: Subject Characteristics**

| Subject Characteristics | Older Men   | Older Women  | P value |
|-------------------------|-------------|--------------|---------|
| Number (n)              | 10          | 10           |         |
| Age (years)             | $60\pm2.2$  | $60.2\pm2.2$ | 0.90    |
| BMI (kg/m²)             | $28\pm0.7$  | 26 ± 1       | 0.08    |
| Albumin (g/L)           | $44\pm0.5$  | $43\pm0.7$   | 0.29    |
| Cortisol (mcg/dL)*      | 12 ± 1.1    | 12 ± 1.2     | 0.97    |
| Estradiol (pmol/L)      | $84\pm8.4$  | $42\pm5.5$   | <0.001  |
| FSH (IU/L)              | $5.4\pm0.5$ | $74\pm7.5$   | <0.001  |
| LH (IU/L)               | $2.9\pm0.5$ | $26\pm 4.4$  | <0.001  |
| Prolactin (pmol/L)      | $287\pm23$  | $326\pm26$   | 0.27    |
| SHBG (nmol/L)           | $37\pm5.4$  | $59\pm4.7$   | 0.01    |
| Testosterone (nmol/L)   | 18 ± 2.3    | 0.5 ± 0.1    | <0.001  |
| TSH (mIU/L)             | 1.8 ± 0.2   | $2.3\pm0.5$  | 0.21    |

#### Table 2: ACTH recovery by gender

| <i>Linear</i><br>Recovery Phase   | ANCOVA<br>(Mean ± SEM) |                  | <i>Nonlinear</i><br>Curve fitting<br>(Mean; 95% CI) |                 |                |
|-----------------------------------|------------------------|------------------|-----------------------------------------------------|-----------------|----------------|
| Mean ACTH concentration (ng/L)    | Men                    | Women            | Mean ACTH<br>concentration<br>(ng/L)                | Men             | Women          |
| Pre-Breakpoint                    |                        |                  | Sigmoid Floor                                       |                 |                |
| Placebo/Saline                    | 22.4 ± 4.3             | 16 ± 1.5         |                                                     |                 |                |
| KTCZ/Saline                       | 34.4 ± 6.2             | 20.6 ± 2.3       |                                                     |                 |                |
| KTCZ/LDC                          | 30.0 ± 5.8             | 15.2 ± 1.3       | KTCZ/LDC                                            | 10.8; 6.7-15.2  | 8.9; 7-10.7    |
| KTCZ/HDC                          | 14.4 ± 2.9             | 5.9±0.9*         | KTCZ/HDC                                            | 4.8; 2.7-5.9    | 4.4; 4.0-5.0   |
| Post-Breakpoint                   |                        |                  | Sigmoid Plateau                                     |                 |                |
| Placebo/Saline                    | 21.3 ± 3.5             | 16.5 ± 2.8       |                                                     |                 |                |
| KTCZ/Saline                       | 42.8 ± 7.5             | 27.5 ± 4.4       |                                                     |                 |                |
| KTCZ/LDC                          | 44.9 ± 7.0             | 25.1 ± 2.4*      | KTCZ/LDC                                            | 39.1; 36.9-41.2 | 23.8; 22.9-24. |
| KTCZ/HDC                          | 30.8 ± 5.2             | 12.1±0.9*        | KTCZ/HDC                                            | 27.3; 26.2-28.3 | 16.2; 15.1-16. |
| Maximum ACTH concentration (ng/L) | Mean; 95% Cl           |                  |                                                     |                 |                |
| Placebo/Saline                    | 43.1; 36.5-49.6        | 35; 27.3-42.7    | ]                                                   |                 |                |
| KTCZ/Saline                       | 76.6; 39.3-114         | 62.1; 19.8-104   | ]                                                   |                 |                |
| KTCZ/LDC                          | 71.4; 49.7-93          | 50.5; 33.3-67.3  | ]                                                   |                 |                |
| KTCZ/HDC                          | 41.1; 27.5-57.7        | 22.2; 19.1-25.4* | 1                                                   |                 |                |

\* To convert to SI units (nmol/L) multiply by 27.6

Data are the mean ± SEM

## **Objective**

To determine the impact of gender in feedback inhibition and feedforward recovery of the hypothalamic-pituitary-adrenal (HPA) axis during and after an experimental cortisol infusion in older subjects

#### **Methods**

We conducted a prospectively randomized double-blind, placebo-controlled, crossover study in 10 older men and 10 post-menopausal women

#### **Experimental Schema**



#### Fig 1. Schema of experiment

#### Sigmoid fits of ACTH and cortisol recovery



- During four separate hospital visits, each subject received oral placebo and intravenous saline (IVS), or oral ketoconazole (KTCZ) and an infusion of either IVS, low-dose (2.5mg/m<sup>2</sup>) cortisol (LDC), or high-dose (10 mg/m<sup>2</sup>) cortisol (HDC)
- ACTH and cortisol concentrations were measured every 10 minutes during the last 4 hours of the saline and cortisol infusions (feedback-clamp phase) and for 10 hours thereafter (recovery phase) (Fig. 1)

#### **Results**

- Gender did not determine mean ACTH concentrations during the clamp phase of glucocorticoid feedback.
- ٠ Gender strongly influenced mean ACTH concentrations during recovery from exogenous cortisol infusion: women <men (p<0.01; KTCZ/low-dose cortisol arm, and p<0.001; KTCZ/high-dose cortisol arm) (Fig. 2, Fig. 3)
- Decreased ACTH recovery in women was ٠ associated with lower mean cortisol concentrations pointing to attenuated drive of ACTH outflow rather than cortisol hypersecretion as the sex-related mechanism.
- Both linear and nonlinear regression analyses ٠ confirmed markedly impaired ACTH recovery in women over time (Table 2, Fig. 4)

#### Gender impact on feedback and recovery of HPA axis



Fig 2. Each panel shows an individual interventional group (placebo/saline, KTCZ/saline, KTCZ/low-dose cortisol, KTCZ/high-dose cortisol). Data from men () and women (e) are displayed separately.

To convert ACTH ng/L to pmol/L, multiply by 0.2202, and cortisol mcg/dL to nmol/L, multiply by 27.6

#### **ACTH:** Initial and delayed recovery



Fig 3.Different upper-case letters in the KTCZ/LDC and KTCZ/HDC arms denote significantly different mean ACTH concentrations, pre- (initial recovery) and postbreakpoint (delayed recovery). Different lower-case letters denote significant gender effects on mean ACTH concentrations both pre- and post-breakpoint during the recovery phase



Fig 4. Time course of median ACTH (top) and cortisol (bottom) concentrations during recovery phase in the KTCZ/LDC arm (left) and KTCZ/HDC arm (right) in older men (blue) and women (red) evaluated via a (non-linear) 4-parameter sigmoidal curve model. The analysis yields estimates of the minimum (floor) and maximum (plateau) concentration along with 95% confidence bands. Time is shown in min. Zero time (x-axis) denotes 0200 h.

#### **Discussion**

- ACTH feedback escape was significantly lower in post-menopausal women compared with older men, after suppression by both low- and high-dose cortisol infusions
- In post-menopausal women, the sluggish return to ٠ baseline could result in longer overall exposure to stress hormones, compensating in part for lower absolute levels
- Intrinsic sex-related differences in the mechanistic regulation of the HPA axis could not be explained by differences in sex-steroid concentrations, as assessed by exploratory linear regression
- Our data suggest that testosterone possibly promotes HPA axis recovery after cortisol suppression, in view of the strong escape of ACTH in older men

#### **Conclusions**

- Gender determines the recovery of the hypothalamo-pituitary unit from cortisol-induced feedback, with attenuated responses in postmenopausal women
- The gender differences may have relevance to stress-related adaptations in the sexes