# PHAEOCHROMOCYTOMAS AND PARAGANGLIOMAS -A 20 YEAR EXPERIENCE FROM THE ROYAL SUSSEX COUNTY HOSPITAL

V Karunakaran<sup>1</sup>, D Kirtchuk<sup>2</sup>, A Velusamy<sup>2</sup>, J Quin<sup>2</sup>

Brighton and Sussex MIS **University Hospitals NHS Trust** 

#### Aim

To investigate our management of patients diagnosed with Phaeochromocytoma and Paraganglioma over the last 20 years and compliance with the following guidelines:

• The NANETS Consensus Guideline for the Diagnosis and Management of Neuroendocrine Tumors: Phaeochromocytoma, Paraganglioma & Medullary Thyroid Cancer- 2010<sup>1</sup>



Phaeochromocytoma: Recommendations for clinical practice from the First International Symposium-2005, at Bethesda, MD, USA<sup>2</sup>

### Introduction

- Phaeochromocytomas and paragangliomas account for about 0.1% of cases of persistent hypertension.<sup>1</sup>
- Only 50% of these are being diagnosed as symptoms are often paroxysmal.<sup>1</sup>
- The initial screening tests, imaging, genetic analysis and modes of treatment have evolved significantly over the last two decades.
- Nevertheless, a standardised approach is essential for early diagnosis and decision regarding appropriate treatment for this diverse condition.

## **Methods and Materials**

• A retrospective data analysis of 16 random patients



|   | Phaeochromocytoma (75%) |                                                                       |
|---|-------------------------|-----------------------------------------------------------------------|
|   | Unilateral              | 100%                                                                  |
|   | Right sided             | 58%                                                                   |
|   | Malignancy              | 8%                                                                    |
|   | Initial size on CT      | 0.5-10cm (mean 5cm)                                                   |
|   | Secretory pattern       | Adrenaline - 67%<br>Adrenaline +Noradrenaline - 58%<br>Dopamine - 16% |
|   | Occurrence              | Familial - 8%<br>Sporadic - 92%                                       |
|   | α-blockade              | 80%                                                                   |
|   | Surgery                 | Laparoscopy - 67%<br>Laparotomy - 33%                                 |
| L | Paraganglioma (25%)     |                                                                       |
|   | Location                | 50% intra abdominal<br>50% extra abdominal                            |
|   | Malignancy              | 75%                                                                   |
|   | Secretory pattern       | Noradrenaline - 100%<br>Dopamine - 75%                                |

• All but 1 patient under 50 years of age were referred for mutation analysis as per guideline.<sup>2</sup>

(Age 24-71 years, mean51) diagnosed and treated for phaeochromocytoma and paraganglioma was performed.

- Data was gathered accessing case notes, clinic letters, PACS and our pathology database from 1994 through to 2013.
- The following aspects were analysed:
- Age and sex
- Total numbers of Phaeochromocytoma / Paraganglioma
- Unilateral or bilateral
- Uni-focal or multi-focal
- Intra or extra abdominal
- Presenting symptoms and duration
- Initial screening and biochemistry
- Secretory pattern
- Imaging used
- Initial size of lesion
- Percentage of MIBG avid lesions
- Benign vs Malignant lesions
- Associated endocrinopathy
- Biochemical markers for malignancy
- Genetic analysis
- Familial or sporadic
- Alpha blockade prior to surgery
- Laparoscopic surgery vs Laparotomy

# Age demographics

- Mutation analysis was negative for SDHB, SDHC, SDHD, VHL and RET.
- 1 patient was diagnosed with neurofibromatosis -1.
- 80% of patients received  $\alpha$ -blockade with Phenoxybenzamine during the first consultation and the rest treated with other agents subsequently.
- All patients with Phaeochromocytoma were able to discontinue their  $\alpha$ -blockade post surgery.
- Urine catecholamines was the biochemical screening tool used for all patients (100%). Urine metanephrines (13%) VMA (6%) was also used. Plasma metanephrines was not used in any of them.
- Urine dopamine when elevated, proved to be a highly sensitive marker to predict malignancy in our cohort of patients. This has been confirmed previously in several reports.<sup>5</sup>
- CT / MRI was the initial imaging modality followed by MIBG<sup>2</sup> in 63% of patients. The remaining had MIBG as first line.
- FDG-PET<sup>2</sup> was used in two patients (13%)(1 benign Phaeo) and 1 malignant PGL as the lesions were MIBG non-avid.
- Histology was reported by various pathologists and features of local invasion did not always correlate with malignancy.<sup>2</sup>

## Conclusions

- Our study is a snap shot that reflects the general trend of management of these tumours in various centres in the UK.
- There is an emerging evidence of superiority of metanephrines,<sup>3,4</sup> especially plasma over urine as a screening tool and there is a growing trend not to rely solely on urine catecholamines when the clinical suspicion is high.
- Predominantly dopamine secreting adrenal tumours could be MIBG non-avid and other functional imaging modalities should be considered; especially to address the increased risk of malignancy.<sup>5,6</sup>
- The evolving genetic spectrum of mutations for screening including TMEM127, MAX, Fumarate





hydratase and various others propose an additional challenge for the clinician and the geneticist.

• A standardised histopathology report with the inclusion of PASS<sup>7</sup> or other similar scoring system might speak the same language in a multi-disciplinary setting to decide an appropriate management plan.

A re-audit with the above considerations will be performed in the next 5 years.

#### References

- 1. The NANETS Consensus Guideline for the Diagnosis and Management of Neuroendocrine Tumors: Phaeochromocytoma, Paraganglioma & Medullary Thyroid Cancer- 2010
- 2. Phaeochromocytoma: Recommendations for clinical practice from the First International Symposium-2005, at Bethesda, MD, USA.
- 3. Diagnostic accuracy of free and total metanephrines in plasma and fractionated metanephrines in urine of patients with pheochromocytoma Eric Grouzmann, Laurence Drouard-Troalen1,2, Eric Baudin1,2, Pierre-Franc, ois Plouin3, Beat Muller4, Daniela Grand and Thierry Buclin European Journal of Endocrinology (2010) 162 951–960
- 4. Plasma free metanephrines are superior to urine and plasma catecholamines and urine catecholamine metabolites for the investigation of phaeochromocytoma. Hickman PE1, Leong M, Chang J, Wilson SR, McWhinney B Pathology. 2009 Feb;41(2):173-7
- 5. Van der Harst E., de Herder W.W., de Krijger R.R., et al. 2002 The value of plasma markers for the clinical behaviour of phaeochromocytomas. European Journal of Endocrinology 147:85-94
- 6. Pheochromocytomas and paragangliomas: assessment of malignant potential. Korevaar TI, Grossman AB. Endocrine. 2011 Dec;40(3):354-65. doi: 10.1007/ s12020-011-9545-3. Epub 2011 Oct 25. Review
- 7. Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) to Separate Benign From Malignant Neoplasms A Clinicopathologic and Immunophenotypic Study of 100 Cases Lester D. R. Thompson, M.D. The American Journal of Surgical Pathology 26(5): 551–566, 2002