Altered Frequency of Sequence Variants in Growth Related Genes in Children with Short Stature

Philip Murray1,2, Adam Stevens, 1 Daniel Hanson1, Andrew Whatmore1, Mireille Bonnemarie3, Laurent Naudin, Pascale Dutayli3, Patrice Deneffe1 and Peter Clayton1,2

1Centre for Paediatrics and Child Health, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK
2Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Central Manchester Foundation Hospitals NHS Trust Manchester, UK
3Translational Sciences, Ipsen Pharma, Boulogne-Billancourt, France

Background
Idiopathic Short Stature (ISS) can be defined as a condition of short stature in which height is below −2 SD scores (SDS) for age, sex and the corresponding population, without evidence of a systemic disease, nutritional, psychological or chromosomal disorder, or overt hormonal abnormalities. Short children without a defined aetiology are classified as ISS where birth weight/length is >−2SD and as Small for Gestational Age (SGA) where birth weight/length is ≤−2SD.

The EPIGROW study1 was a cross sectional epidemiogenetic study designed to identify clinical, biological, and genetic characteristics in a large European cohort of ISS/SGA children. Next generation deep sequencing of 232 candidate genes was undertaken in 263 ISS/SGA children and 263 ethnically matched controls. Two Single Nucleotide Polymorphisms (SNPs) (one in ZBTB38 and one in NFKB1) and one insertion/deletion (indel) in IGF1 were identified as having a significantly different frequency between cases and controls.

Results
The aim of this study was to to determine in the EPIGROW cohort if the frequency of SNPs or indels within each of the 232 candidate genes was different between cases and controls.

Methods
All SNPs/indels were identified in patients and controls. Gene level SNP/indel frequency was considered to be different where a Benjamini-Hochberg adjusted p-value from a chi square test was <0.05. SNP/indel frequency was assessed for both carriage of SNP/indel (homozygous plus heterozygous v wild type) and carriage of homozygous SNP/indel (homozygous v heterozygous plus wild type).

Table 1 – Genes where SNP carriage frequency (homozygous plus heterozygous v wild type) was significantly different (adjusted p-value <0.05) between cases and controls. Arrows indicate change in frequency in patients relative to control.

Table 2 – Genes where SNP carriage frequency (homozygous v heterozygous plus wild type) was significantly different (adjusted p-value <0.05) between cases and controls. Arrows indicate change in frequency in patients relative to control.

SNPs
30 genes were identified where SNP carriage frequency was significantly different (see Table 1). In patients SNP frequency was increased for 12 genes and decreased for 18 genes. These included IGFALS(↓), HRAS(↑), STAT5b(↓) and FANCA(↓) which are associated with short stature conditions, MAP2K1(↑) and SOCS1(↑) associated with growth pathways and SDR16AS(↑) associated with adult height.

45 genes were identified where homozygous SNP carriage frequency was significantly different (see Table 2). In patients SNP frequency was increased for 11 genes and decreased for 34 genes.

Conclusions
There are growth related genes in which sequence variant frequency was significantly different between children with short stature and controls. Combinations of functional variants in these genes may contribute to growth impairment. The majority of the genes identified had a decrease in sequence variant frequency in patients implying a substantial number of sequence variants are associated with improved growth.

Acknowledgements – We thank the 39 EPIGROW investigators from 9 European countries.

References