UNIVERSITY OF BIRMINGHAM Steroid sulfatase contributes to Systemic androgen activation in pre-pubertal boys – lessons from steroid sulfatase deficiency

<u>Jan Idkowiak¹</u>, Angela Taylor¹, Donna M. O'Neil¹, Sandra Subtil¹, Raymon Vijzelaar², Renuka P Dias³, Rakesh Amin⁴, Timothy G Barrett^{1,3,6}, Jeremy Kirk⁵, Cedric H Shackleton¹, Celia Moss⁶ and Wiebke Arlt¹

(1) CEDAM, Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom; (2) MRC-Holland by, 1057-DN Amsterdam, The Netherlands; (3) Centre for Rare Diseases and Personalized Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom (4) Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London VCIN 3JH (5) Department of Paediatric Endocrinology and (6) Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London VCIN 3JH (5) Department of Paediatric Endocrinology and (6) Department of Paediatric Endocrinology, Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, United Kingdom

Introduction

The enzyme Steroid Sulfatase (STS) cleaves sulfate groups from steroid sulfate esters, including the adrenal androgen metabolite DHEAS, thereby making DHEA available for downstream activation towards sex steroids. STS deficiency (STSD) due to inactivating deletions or mutations in the STS gene causes X-linked ichthyosis (OMIM 308100), a skin condition characterized by dry scales thought to be due to the epidermal accumulation of cholesterol sulfate. A defect in PAPSS crucially supporting DHEA sulfation by SULT2A1 - the opposite enzymatic reaction of STS - results in androgen excess due to increased conversion of DHEA to active androgens (Noordam et al., NEJM 2009).

What is the impact of STS on androgen metabolism during childhood?

Summary and conclusions

A ** MLPA - complete deletion

- We have investigated androgen metabolism in a large cohort of patients with STSD; the cohort is genetically characterised and covers two key developmental periods, adrenarche and puberty.
 There are no physical abnormalities in our STSD cohort, including no pubertal delay or clinical signs
- of hypogonadism
- Sulfated steroids/ androgen precursors are elevated, reflecting the incapacity of de-sulfation in STSD
- Reduced DHEA (and testosterone) levels indicate biochemical evidence of decreased androgen activation by STS
- 5α-reductase activity is increased in STSD, suggesting increased androgen activation as a compensatory mechanism for the decreased availability of precursor steroids for downstream conversion towards active androgens
- An increased DHEA/DHEAS ratio during adrenarche suggests a distinct role for STS in androgen metabolism before puberty

STS Ref Seq NG_021472

(MLPA):

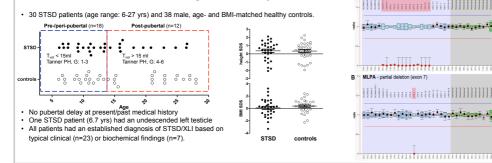
vere identified

Exon 9: g.114,414 C>T; c.1,360 C>T; p.R454C

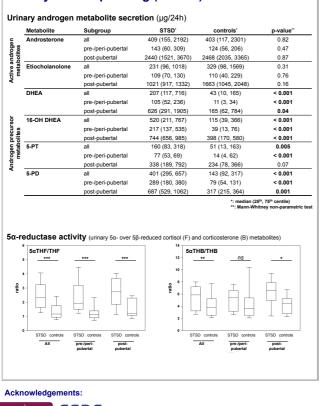
AACGCCTACTTAAATGCTGTG<mark>C</mark>GCTGGCACCCTCAGAACAG N A Y L N A V R W H P Q N

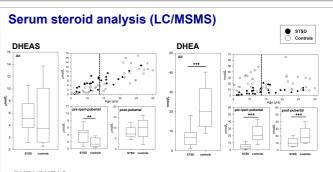
ANCOCCTACTTANATOCTOTO CCTOCCACCECTAGAACAC

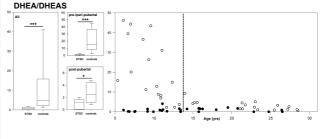
Multiplex-ligand-dependent probe amplification

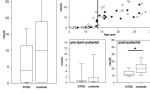

27 STSD had a complete deletion of the STS gene and the neighbouring HDHD1 gene (90%) One patient had a partial deletion of exon 7 only

Saenger sequencing: • Two brothers were found to harbour a previously described missense mutation (p.R454C).


No deletions of further neighbouring gene loci


Results


Patients characteristics and genetic analysis


Urinary steroid profiling (GC/MS)

