## Dutasteride and 5α-reductase type 1 activity: for androgens only? <u>CT West</u>, RP Vincent, NF Taylor

## Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London

## **Background and Aim**

- Three 5 $\alpha$ -reductase (5 $\alpha$ -R) isoenzymes are described (5 $\alpha$ -R1-3)  $\bullet$
- The role of  $5\alpha$ -R1 in physiological or pathological states is not clear
- 5α-R2 deficiency causes XY pseudohermaphroditism
- 5α-R3 deficiency causes neurological problems •
- Urine steroid profiling (USP) by Gas-Chromatography Mass-Spectrometry  $\bullet$ (GC-MS) is effective in demonstrating  $5\alpha$ -R activity
- In the context of diagnosis of  $5\alpha$ -R2 deficiency significantly reduced
- ...and two cortisol metabolite ratios, allo-tetrahydrocorticosterone (aTHB) to tetrahydrocorticosterone (THB) and allo-tetrahydrocortisol (allo-THF) to tetrahydrocortisol (THF)
- Dutasteride and finasteride are  $5\alpha$ -R inhibitors
- Finasteride use strongly inhibits  $5\alpha$ -R2 and to a lesser degree  $5\alpha$ -R1, USP in finasteride shows close concordance with  $5\alpha$ -R2 deficiency
- Dutasteride is a dual inhibitor and inhibits  $5\alpha$ -R1 60-fold compared to finasteride, USP on these individuals is not currently described

excretion of  $5\alpha$ - compared with 5 $\beta$ -reduced steroid metabolites are seen

- These  $5\alpha$ -/ $5\beta$ -ratios are split into four: two androgen metabolite ratios,  $\bullet$ androsterone (A) to aetiocholanolone (Ae) and 11β-hydrpxyandrosterone (110HA) to  $11\beta$ -hydroxyaetiocholanolone (110HAe)
  - Method
  - Retrospective case-control study using USP data compiled from samples submitted to our departmental database
  - Three study groups formed: genetically confirmed 5α-R2 deficient patients (n=28), finasteride use (n=6) and dutasteride use (n=2) – compared with matched controls (n=36)
  - Data analysed for significance with Mann-Whitney U test



• AIM: to compare USP of finasteride and dutasteride against normal controls and individuals with  $5\alpha$ -R2 to investigate whether there are significant changes in excreted urinary steroid metabolites when  $5\alpha$ -R1 is inhibited in addition to  $5\alpha$ -R2



- Results summarised in box-and-whisker plots (figures 3-5)
- Controls showed higher  $5\alpha$ -/ $5\beta$ -ratios for and rogen and corticosteroid metabolites – some overlap seen between controls and  $5\alpha$ -R2 deficiency in 110HA:110HAe ratio, all differences significant
- $5\alpha$ -R2 deficiency and finasteride had range overlap in all four ratios, differences were not statistically significant
- Dutasteride and  $5\alpha$ -R2 deficiency had no range overlap in androgen metabolite ratios that was statistically significant, but gross overlap in corticosteroid ratios



## Conclusions

- We confirm that 5*α*-R2 deficiency and finasteride produce similar USP, with corticosteroid metabolites (aTHB:THB and aTHF:THF) being the main ratios affected, supporting the expectation that 5 $\alpha$ -reduction of corticosteroids is more dependent on 5 $\alpha$ -R2 activity
- We show there is a statistically significant reduction in and rogen  $5\alpha$ -/5 $\beta$ -metabolite ratios (A:Ae and 110HA:110HAe) in dutasteride compared to  $5\alpha$ -R2 deficiency where  $5\alpha$ -R1 is inhibited in addition to  $5\alpha$ -R2, with the implication that  $5\alpha$ -R1 has a significant role in and rogen catabolism
- This may include 5α-reduction of testosterone and dihydrotestosterone which may explain why the measuring the ratio of these androgens in the serum of patients with  $5\alpha$ -R2 deficiency can have a low diagnostic sensitivity
- There is evidence from animal studies that supports  $5\alpha$ -R1 having an involvement in androgen metabolism, including knockout studies that demonstrate derangement of sex steroids – there may be potential for similar pathological states in humans exhibiting similar USP to those seen in dutasteride





