INTRODUCTION

Paediatric oncology patients are at even higher risk of becoming deficient because they spend more time indoor, often have an inadequate dietary intake and increased 25(OH)D catabolism as a result of treatment induced side-effects. Despite this, guidelines on supplementation remain inconsistent in this population.

Survivors of childhood cancer have an increased risk of developing the metabolic syndrome, cardiac complications and have a reduced peak bone mass due to related treatment side-effects, which might be exacerbated by vitamin D deficiency during and after the completion of therapy.

AIMS
- To assess the impact of micronutrient and macronutrient supplementation on plasma 25(OH)D in paediatric oncology patients from SE Scotland.
- To assess parathyroid hormone (PTH) levels before and after supplementation and whether this correlates with 25(OH)D in our paediatric oncology patient-cohort.

METHODS
A case-control time series cross-sectional study was performed. We included patients aged <18 years, diagnosed and treated for cancer. We excluded patients treated palliatively.

Childhood cancer was categorised into four groups: solid tumours, haematological malignancies, brain tumours and other associated-diagnoses.

Plasma 25(OH)D and PTH was measured in healthy children (controls) and paediatric oncology patients (cases).

Supplementation was prescribed to paediatric oncology patients according to Subjective Global Assessment by the multidisciplinary team and consisted of macronutrient (enteral, +/- parenteral nutrition) and micronutrient (D, multivitamins, +/-macronutrient). Vitamin D obtained from both diet and macronutrient supplementation was documented.

25(OH)D deficiency was classified according to Endocrine Society Clinical Practice Guidelines 2011:
- Suboptimal (50-75nmol/L)
- Insufficient (25-50nmol/L)
- Deficient (<25nmol/L).

PTH range: 1.6-7.5pmol/L (Scottish Laboratory reference).
Plasma 25(OH)D was measured using the Automated Vitamin D Immunoassy in Glasgow Royal Infirmary Laboratory and the Great North Children’s Hospital, Newcastle.

Descriptive statistics, Spearman’s and Wilcoxon’s test were performed.

RESULTS
35 healthy controls and 67 paediatric cancer patients were recruited. Plasma 25(OH)D levels did not statistically differ between the 35 healthy-controls (median [IQR] 31 (15-56) nmol/L) and the 67 patients (median [IQR] 35 (20-58) nmol/L) at diagnosis. Characteristics of the controls and the cases did not differ.

Characteristics of the cases:
- Age: median [IQR] age: 7.8 (5.5-12.03) years
- Gender: 59% M and 41% F
- Ethnicity: non-white 2.5%, white 97.5%
- Diagnostic criteria: Solid tumours 46% (31), haematological malignanies 40% (27), brain and benign tumours 7.5% (5) and other associated diagnoses 6% (5)

40/67 patients had plasma 25(OH)D measured before and after supplementation.

At diagnosis

Plasma 25(OH)D before and after supplementation

Median (IQR) time between diagnosis and supplementation was 2.9 (0.9-6.3) months and between supplementation and the repeated 25(OH)D measurement 2.7 (1.6-6.7) months.

Baseline n=40
25(OH)D median [IQR] 35 (20-58) nmol/L
Suboptimal: 23%
Insufficient & Deficient: 62.5%
PTH median [IQR] 3.5 (2.3-5.6) pmol/L
Hyperparathyroidism: 12.5%
Hyperparathyroidism: 7.5%

Before macronutrient supplementation
(n=7;17.5%)
25(OH)D median (IQR) 77 (48-81) nmol/L
Suboptimal: 28%
Insufficient & Deficient: 14%
PTH median (IQR) 3.6 (1.4-5.6) pmol/L

After macronutrient supplementation
(n=7;17.5%)
25(OH)D median (IQR) 54 (19-89) nmol/L (p=0.05)
Dietary vitamin D median (IQR) 8.65 (6.19-10.15)
μg/day
43% of patients remained with suboptimal 25(OH)D PTH median (IQR) 4.3 (1.4-5.65)

Before micronutrient supplementation
(n=33; 82.5%)
25(OH)D median [IQR] 28.5 (15-27) nmol/L
Suboptimal: 14%
Insufficient & Deficient: 38%
PTH median (IQR) 3.3 (2.3-5.6) pmol/L
Hyperparathyroidism: 9% (3/33)
Hyperparathyroidism: 15% (5/33)

After micronutrient supplementation
(n=33; 82.5%)
25(OH)D median (IQR) 65.5 (44-87) nmol/L
(κ) 1 pr=0.001; r=0.7
20% remained with suboptimal 25(OH)D PTH median (IQR) 3.0 (2.0-4.4)
9% remained with hyperparathyroidism

PTX and 25(OH)D correlated only in healthy controls, but no significant correlation was observed in paediatric cancer patients (figures 4.5.6).

Conclusion

- 25(OH)D levels improved only after micronutrient supplementation and deteriorated after macronutrient supplementation alone, suggesting that the latter form of supplementation does not meet the vitamin D needs of this population.
- To optimise the 25(OH)D status, regular monitoring alongside appropriate supplementation, must be adapted to the specific needs of this population, should be incorporated into clinical practice.

Acknowledgements
We would like to thank the Fergus MaitlayLoukaemia Trust, the Leukaemia Research Fund and Queen Margaret University for their generous grants. We would also like to thank all the participants for their collaboration.

Presenters email address: revueleinaiesta@gmu.ac.uk

References: