Exenatide protects pancreatic islets against brain death-induced inflammation and viability loss

Carlessi R, Dias ALPO, Bauer AC, Canani LH, Leitão CB and Crispim D

Endocrine Division - Hospital de Clínicas de Porto Alegre, and Post-graduate Program in Medical Sciences: Endocrinology – UFRGS. Porto Alegre, Rio Grande do Sul, Brazil. Email: daisy_crispim@hotmail.com

INTRODUCTION

Pancreatic islet transplantation is an effective therapy for unstable type 1 diabetes mellitus. However, restoration of β-cell function after transplantation and the ensuing improvement in glycemic control depend on a high rate of islet engraftment, which is hindered by the marked destruction of islets during the isolation and transplantation processes. The donor's brain death (BD) is among the main factors contributing for islet loss in this scenario. Exendin-4, a glucagon-like peptide-1 (GLP-1) synthetic analog, exerts anti-inflammatory effects leading to an increase in islet viability in vitro. Here, we hypothesized that this drug could alleviate the damage caused by BD on pancreatic islets, improving the quality of such islets for transplantation. Therefore, we proposed a study in a murine model of BD in which the effect of the administration of Exendin-4 (exenatide) was evaluated in respect to islet quality outcomes, such as viability, function, and expression of genes related to inflammation, and endoplasmic reticulum (ER) stress.

METHODS

> Male Wistar rats, weighing 300-350g, were separated into 3 experimental groups: 1) Sham (control), 2) BD, and 3) BD + Exenin-4 4.5µg/kg (BD+Ex-4).
> Following pancreas retrieval and islet isolation, viability of dispersed islets was determined by fluorescein diacetate (FDA)/propidium iodide (PI) assay. β-cell function was evaluated by glucose-stimulated insulin release: islets were incubated (1h) in media containing first low (2.8 mM, LG) then high (28 mM, HG) glucose concentrations. The amount of insulin in the supernatant of each sample was measured using a rodent-specific insulin ELISA kit. Stimulation index (SI) was calculated by dividing insulin content of islets stimulated with HG by the insulin content of islets stimulated with LG.
> Gene expression of IL-1β, IL-6, TNF-α, Bcl-2, CHOP and BIP in pancreatic tissue and isolated islets were assessed by RT-qPCR, while apoptosis was investigated by western blot and immunohistochemistry for active-caspase 3.

RESULTS

Islets isolated from the BD group showed a striking reduction in viability as compared to control and BD+Ex-4 groups (Figure 1A). Accordingly, islets from BD rats had an increased number of dead cells (PI positive) as compared to the other groups (Figure 1B).

Interestingly, endoplasmic reticulum (ER) stress genes, Chop and Bip, were increased in islets isolated from BD animals as compared to the other groups (Figure 4A and 4B). Our data also suggest a greater expression of Chop-2 in islets originated from the BD group (1.36 ± 0.12 vs. 1.0 ± 0.26 (control) vs. 0.93 ± 0.28 (BD+Ex-4) arbitrary units; P < 0.11).

CONCLUSIONS

> Our data indicate an increase in the inflammatory state and ER stress as well as a reduction in the cell viability and function of islets isolated from the BD group. Exenin-4 administration following the establishment of the BD seems to protect the islets against such deleterious effects.