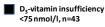
1, 25-dihydroxyvitamin D₃ decreases the proinflammatory interleukin 17 serum levels

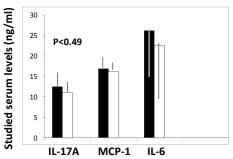
Molnár I¹, Bohaty I², Somogyiné-Vári É¹

Immunoendocrinology and Osteoporosis Centre, EndoMed¹, and Regional Centre of Hungarian National Blood
Transfusion Service², Debrecen, Hungary

Background


Th17 cells , which are involved in innate and adaptive immunity, produce IL-17A main cytokine. IL-17A leads to a local inflammation and bone wasting. The proinflammatory IL-17A cytokine is involved in cardiovascular diseases, osteoporosis and/ or infertility (1).

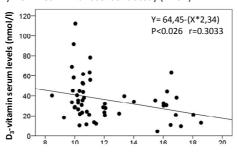
1,25-dihydroxyvitamin $\mathrm{D_3}$ as a pleiotropic hormone plays a crucial role in inflammatory and immune responses. Its receptor (VDR) is present on monocytes/macrophages, T and B lymphocytes, neutrophils and dendritic cells (2, 3).


The effect of vitamin D_3 on inflammatory cytokine and chemokine serum levels was studied.

Results

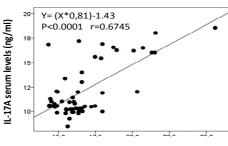
- **1. Figure:** IL-17A levels were significantly lower in women with 1,25-dihydroxyvitamin D₃ sufficiency.
- **2. Figure**: IL-17A levels correlated inversely with vitamin D₃ serum levels.
- **3. Figure**: IL-17A levels correlated inversely with monocyte chemoattractant protein 1 (MCP-1) serum levels.
- **4. Figure**: IL-17A levels correlated inversely with IL-6 serum levels.

D₃-vitamin sufficiency >75 nmol/l, n=11


Figure 1: Proinflammatory cytokine (IL-17A, IL-6) and chemokine (MCP-1) serum levels were studied in 54 women according to vitamin D₃ serum levels.

Patients and methods

Proinflammatory cytokine and chemokine serum levels were investigated in 54 women (Table 1).


1, 25-dihydroxyvitamin D_3 serum levels were measured by chemiluminescence method (LIAISON, USA).

IL-17A, monocyta chemoattractant protein-1 (MCP-1) and IL-6 proinflammatory cytokines were measured by enzyme linked immunosorbent assay (ELISA).

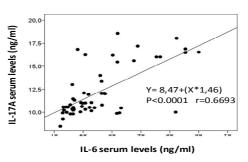

IL-17A serum levels (ng/ml)

Figure 2: IL-17A serum levels correlated inversely with vitamin D₂ serum levels in 54 women.

MCP-1 serum levels (ng/ml)

Figure 3: IL-17A serum levels correlated positively with MCP-1 (monocyte chemoattractant protein-1) serum levels in 54 women.

Figure 4: IL-17A serum levels correlated positively with IL-6 serum levels in 54 women.

Clinical parameters

Parameters	D ₃ -vitamin deficiency (n=18) <50 nmol/l	D ₃ -vitamin insufficiency (n=25) 51-75 nmol/l	D ₃ -vitamin sufficiency (n=11) >75 nmol/l	P- values
Age (years)	59±17	61±13	61±12	
BMI* (kg/m²)	29±5	29±6	29±6	
D ₃ -vitamin (nmol/l)	16,84±6,06	35,08±5,79	68,95±44	
IL-17A (ng/ml)	13,35±2,9°	12,07±2,61	11±1,9°	0.033
MCP-1** (ng/ml)	17,35±2,9	16,62±2,07	16,18±1,23	
IL-6 (ng/ml)	26,11±12,66	26,25±12,23	22,68±13,52	

*Body mass index (BMI) **Monocyte chemoattractant protein-1 (MCP-1)

Conclusions

1,25-dihydroxyvitamin $\,{\rm D}_3\,$ exerted inhibiting effect on proinflammatory cytokine (IL-17A and IL-6) serum levels.

Vitamin $\rm D_3$ deficiency was associated with higher IL-17A serum levels highlighting its influencing role in diseases characterized by inflammatory events.

The strong correlation between IL-17A and MCP-1 or IL-6 serum levels suggested their implication in the initiation of local inflammation, such as in vascular damage leading to cardiovascular diseases besides their bone wasting effect.

The results supported that vitamin D_3 supplementation can helpful to limit the inflammatory processes caused damages (4).

References

- 1. Molnár I, Bohaty I, Somogyiné-Vári É: IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis. Osteoporosis Int 2014; 25:783-786.
- 2. Di Rosa M, Malaguarnera M, Nicoletti F, Malaguarnera L: Vitamin D $_3$: helpful immuno-modulator. Immunology, 2011; 134:123-139.
- 3. Sigmundsdottir H: New aspects on immunoregulation by vitamin D analogs. Dermato-Endocrinology 2011; 3:187-192.
- 4. Zhang H, Shih DQ, Zhang X: Mechanisms underlying effects of 1,25-dihydroxyvitamin D₃ on the Th17 cells. Eur J Microbiol Immunol 2013; 3:237-

ECE 2014. 05.3-7. Wroclaw, Poland molil@endomed.hu