Brain, mood and cognition during treatment initiation in mild hypothyroidism

Quinne, E.M., Karger, S., Arélén, K., Schroeter, M.L., Kratzsch, J. & Villringer, A.
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
weig@cbs.mpg.de

Introduction
Animal studies (Alzoubi et al. 2009) and first human brain imaging studies (Bauer et al. 2009) suggest neural involvement in affective and cognitive symptoms of hypothyroidism. Here, we introduce non-invasive magnetic resonance imaging (MRI) that allows the investigation of brain structure and functional connectivity between brain regions in living patients. Thereby, we try to identify neural correlates of hypothyroidism symptoms.

Methods
9 patients and 9 healthy matched control subjects underwent structural and resting-state functional 3T MRI scanning and comprehensive neuropsychological testing before and 3 months after treatment initiation. Voxel-based-morphometry (Ashburner & Friston, 2000) was used to investigate grey matter density and resting-state functional MRI (Fox & Raichle, 2007) to analyse the connectivity between brain regions known to be involved in hypothyroidism such as the hippocampus, the amygdala and the anterior cingulate cortex (Bauer et al. 2009). Groups were compared on all measures pre- and posttreatment. Changes specific to the patient group were assessed by paired t-tests and the interaction between group and time. Affective symptoms were additionally correlated with brain structure and function.

Results
• Treatment restored thyroid hormone levels to the reference range.
• Patients reported significantly higher symptom load, reduced well-being and mental health compared to the control group before treatment.
• Mood alterations reversed with treatment.

Table 1 Descriptive (mean±SD) and statistical (p-values) results of patient and control group pre- and posttreatment initiation.

<table>
<thead>
<tr>
<th>Sample characteristics</th>
<th>Patient group (n=9)</th>
<th>Control group (n=9)</th>
<th>Group comparison</th>
<th>Change in patients</th>
<th>Interaction group*time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>42±5</td>
<td>38±6</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>1 male</td>
<td>1 male</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligence (IQ)</td>
<td>104±10</td>
<td>107±8</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum thyroid hormone levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH (mU/l)</td>
<td>6.1±1.2</td>
<td>2.9±1.1</td>
<td><0.05</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>FT3 (pmol/l)</td>
<td>4.8±1.1</td>
<td>4.5±1.1</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>FT4 (pmol/l)</td>
<td>12.6±2</td>
<td>14.5±1</td>
<td><0.05</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>TPO-ab (U/ml)</td>
<td>285±184</td>
<td>287±184</td>
<td><0.01</td>
<td><0.01</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Patient-reported outcomes
Beck depression scale 6.0±3.5
Hamilton depression scale 6.4±3.6
Well-being questionnaire-12 23±5
Symptom Check List-90 1.3±0.2
Short Form 36 – physical 56±6
Short Form36 – mental 45±8
Thyroid Symptom Rating (ThySRQ) 6.9±3
Thyroid-related Quality of Life (ThyQoL) 1.2±0.7

Conclusions
We did not find evidence in favour of neural alterations in mild hypothyroidism, contrasting positive findings in severe hypothyroidism (Bauer et al. 2009; Singh et al. 2013). The observed mood normalisation most likely mirrors a placebo effect as it has only been shown in control group comparisons, but not in placebo-controlled trials (Dayan and Panicker, 2013). Our findings are in line with recent well-powered population-based studies that fail to show affective and cognitive symptoms in mild incidentally detected hypothyroidism, but report affective symptoms in known hypothyroidism irrespective of the thyroid hormone status (Jergensen et al. 2014; Samuels et al. 2014). Reported affective symptoms in known adequately treated hypothyroidism (Quinne et al. 2013, 2014) thus more likely derive from unspecific factors such as labelling. Our MRI data is available for use in meta-analyses here: http://neurovault.org/collections/169.

References