Oestrogen metabolism by steroid sulphatase and 17beta-hydroxysteroid dehydrogenases promotes colorectal cancer proliferation via the G-protein coupled oestrogen receptor

1,3 Lorna C. Gilligan, 1Habibur Rahman, 1Anne-Marie Hewitt, 1Angela E. Taylor, 2Dion G. Morton and 1Paul A. Foster
1 School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham, UK, 2 School of Cancer Sciences, University of Birmingham, Birmingham, UK, 3. lg173@bham.ac.uk

BACKGROUND

Colorectal cancer (CRC) is the third most common cancer worldwide. Although not traditionally viewed as a hormonal cancer, evidence suggests that peripheral synthesis of active oestrogens in CRC worsens prognosis. Oestrogen metabolising enzymes include steroid sulphatase (STS), which de-sulphates oestrogens into their active forms and 17β-hydroxysteroid dehydrogenases (17βHSDs) which are oestrogen oxidoreductases. We previously demonstrated TNFα and IL-6 can increase STS activity in vitro and STS activity is raised in human CRC, but further assessment of the oestrogen pathway in CRC is still needed; such as their impact on proliferation. 17βHSD-1, 7 and 12 all reduce oestrogen (E2) to the most potent oestrogen, oestradiol (E2), and have not been characterised in CRC. Also, although ERα and β have previously been examined in the colon, the G-protein coupled oestrogen receptor (GPER) has not been explored and is a potential target for oestrogen action.

OBJECTIVES

1. To determine whether E2 synthesis pathways, through STS and 17β-HSDs, are elevated in human CRC?
2. To examine whether CRC cell lines proliferate in response to oestrogen?
3. To determine if oestrogens stimulate GPER to affect proliferation in CRC cell lines?

METHODS

1. Characterised 17βHSD-1, 7 and 12 and GPER expression in human CRC tissue and cell lines using qPCR and Western Blotting.
2. Proliferation response in CRC cell lines oestrogen treatment, stable overexpression of STS, GPER agonist (G1), or antagonist (G15) using BrdU assays. Treatments were for 48 hours.
3. Quantified oestrogen and their sulphates in CRC cell lines using a novel mass spectrometry method developed at The University of Birmingham.
4. Statistics were calculated using Student’s two-tailed t-test with P<0.05 deemed significant. Results are expressed as mean ± SEM.

REFERENCES


CONCLUSION

- Findings suggest the majority of human CRC escalate intratumoural E2 concentrations through 17βHSD-7 and 12 and STS (Figure 5). This local oestrogen rise likely acts through GPER to augment tumour proliferation.
- Therefore, inhibiting STS and 17βHSD-7 and 12 together with GPER antagonists may benefit some CRC patients.

Figure 3. Oestrogen treated HCT116 (A) and HT29 (B), but not Caco-2 cells (not shown) resulted in an increase in proliferation, especially with E2 treatment.

Overexpressing STS and GPER Stimulation increases Proliferation in CRC Cell Lines

Figure 4. (A) Western blot demonstrating GPER protein expression in all CRC cell lines. (B) Stably overexpressing STS and E2 (100nM) treatment in HCT116 cells enhanced proliferation, which was inhibited by G15 (1μM), a GPER antagonist. (C) and (D) HCT116 and Caco-2 cells were treated with 100nM E2 or E2 for 24 hours and media subjected to LC/MS analysis for oestrogen metabolites. (E) Percentage of E2 or E2 metabolised by each cell line in 24 hours. (F) E2 metabolism corrected for protein concentration (BCA assay). E2 is GPER ligand, but Caco-2 cells oxidise E2 to E2, which would not activate GPER, GPER agonist, G1, increased proliferation in (E) Caco-2, (F) HCT116 and HT29 cells.

Figure 5. Oestrogen pathway in colorectal cancer. Circulating E2 is taken up by tumour cells and desulphated by STS to active E2, which is then reduced by 17βHSD-7 and 12 to E1, the most potent oestrogen. IL-6 and TNFα in the tumour microenvironment increase STS activity.