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1. Introduction 4. Study Design

In order to determine the influence of DBP and 3-epi-250H Vitamin D on several 250H Vitamin D
ELISA assays, a study examining DBP and 3-epi-250H Vitamin D as an endogenous interference,
similar to how hemoglobin, cholesterol, or total protein would be measured, was performed at the
DIAsource facilities.

The measurement of 250H Vitamin D has tremendously evolved since the first competitive
protein-binding assay that used tritiated 250H Vitamin D3 and a Vitamin D binding protein
(DBP) originating from rat. As an example solvent extraction, which the role was to solubilize
the hydrophobic 250H Vitamin D and to precipitate its binding proteins, gradually gave way to
methods involving pH shifts, enzymatic digestion, displacement chemicals or hybrid solutions.

In 2012, DIAsource Immunoassays launched an innovative ELISA assay. The innovation lies Iin
the release of 250H Vitamin D from its binding proteins that takes place directly in the coated
microplate, while all other non-automated assays involve one or multiple preparation steps
prior to the immunoassay. The benefits are a decrease in the assay hands-on time, the
possibility to fully automate the assay on ELISA platforms and the suppression of the risk for
errors due to mislabeling of the dilution tubes. Furthermore the assay is based on patented
monoclonal antibodies, which provide the assay an excellent specificity profile and lot-to-lot
reproducibility.

Although the acceptance of the Thienpont’s and NIST LC-MS/MS assays as reference methods,
and the recent initiative towards standardization of the Vitamin D assays [1] have contributed
to an improvement in the method-related variability in serum 250H Vitamin D measurement,
differences remain between assays. These variations can affect the 250H Vitamin D clinical
decision-making [2,3]. The variance in concentration of Vitamin D Binding Protein (DBP) and
C3-epi-250H Vitamin D can both participate in the inter-assay heterogeneity.

Five human serum pools containing increasing concentration of 250H Vitamin D (range 8-60 ng/mL)
were prepared from native, single patient, serum samples. Each of the five serum pools were
divided into aliquots, and DBP and C3-epimer were spiked into aliquots of each pool to various
levels. 250H Vitamin D measurements of spiked and unspiked pools were then performed using
different ELISA assays. All measurements were performed on the same day, using the same aliquots.

The following 250H Vitamin D assays were evaluated:
DIAsource 250H Vitamin D Total ELISA
Euroimmun 25-OH Vitamin D ELISA

Calbiotech 25-OH Vitamin D ELISA
DRG 25-OH Vitamin D (total) ELISA

IDS 25-Hydroxy Vitamin D EIA
Immundiagnostik 25-OH Vitamin D direct, ELISA
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The DIAsource 250H Vitamin D Total ELISA assay was the only method that was not influenced nor
by the added DBP, neither by the added C3-epimer.

The IDS ELISA assay was slightly negatively influenced by the addition of DBP but not by the addition
of C3-epimer. The Calbiotech assay showed a strong influence upon addition of exogenous DBP but
was not significantly impacted by the addition of C3-epimer. The DRG and Euroimmun methods
were both strongly affected by the addition of both DBP or C3-epimer.

The different 250H Vitamin D release methods and the antibody specificity profile, or DBP
specificity profile in the case of the DRG assay, are mostly responsible for these contrasting

behaviors.
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