Different influences of physiological and medicamentous hyperprolactinemia on calcium metabolism in rats – experimental study

Danijela Radojkovic, Milica Pesic, Slobodan Antic, Sasa Radenkovic, Marija Vukelic, Tatjana Jevtovic Stoimenov
Medical Faculty, University Nis, Serbia
Clinic for endocrinology, diabetes and metabolic disorders, Clinical Center Nis, Serbia

Introduction
The mechanism by which hyperprolactinemia in pregnancy leads to mild and reversible changes in maternal skeletal system and medicamentous hyperprolactinemia causes more detrimental effects, is not completely clarified.

The aim of the study
We conducted the experimental study to compare prolactin receptor gene (Prlr) expression in the duodenum, vertebra and kidney, during physiological and medicamentous hyperprolactinemia which could influence calcium homeostasis.

Experimental design

Experimental rats with hyperprolactinemia:
- Group P: 9 rats, 3 week pregnant (physiological hyperprolactinemia)
- Group M: 10 rats, that were intramuscular administrated Sulpirid (10 mg/kg) twice daily for 3 weeks (medicamentous hyperprolactinemia)

Experimental rats with normal prolactin:
- Group C: 10 rats, age matched nulliparous (control group)

Laboratory results

<table>
<thead>
<tr>
<th></th>
<th>P-group</th>
<th>M-group</th>
<th>C-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRL (pg/mL)</td>
<td>181.80±29.65 a</td>
<td>182.03±57.80 b</td>
<td>105.38±28.34</td>
</tr>
<tr>
<td>s-Ca++ (mmol/L)</td>
<td>0.5±0.2 a</td>
<td>1.15±0.04 b</td>
<td>1.12±0.04</td>
</tr>
<tr>
<td>s-P (mmol/L)</td>
<td>2.42±0.46 c</td>
<td>2.44±0.48</td>
<td>2.05±0.49</td>
</tr>
<tr>
<td>u-Ca (mmol/24h)</td>
<td>3.03±0.46 b</td>
<td>4.31±1.14 c</td>
<td>3.05±0.38</td>
</tr>
<tr>
<td>u-P (mmol/24h)</td>
<td>141.35±20.65 a</td>
<td>50.58±9.77 b</td>
<td>45.54±7.99</td>
</tr>
<tr>
<td>TP1NP (pg/mL)</td>
<td>489.22±46.77 a</td>
<td>309.60±36.74 b</td>
<td>366.90±53.01</td>
</tr>
</tbody>
</table>

* p<0.001; b p<0.01; c p<0.05; Log2(P/C) vs (M/C) p<0.001

Relative expression of mRNA Prlr in duodenum

Relative expression of mRNA Prlr in vertebra

Relative expression of mRNA Prlr in kidney

Conclusion
In medicamentous hyperprolactinemia, down-regulation of Prlr gene expression in duodenum could be underlying reason for diminished intestinal calcium absorption. Increased calciumuresis could be partly due to down-regulated Prlr gene expression in the kidney. In order to maintain calcium homeostasis, since intestinal absorption is compromised and loosing via kidney elevated, prolactin will rapidly take calcium from skeletal system, thank to increased Prlr gene expression in the vertebra, leading to more harmful effect on bone metabolism comparing to physiological hyperprolactinemia.