Salivary Cortisone is Reduced in Addison's disease **Receiving Hydrocortisone Replacement, but Salivary Cortisol Day Curves do Not Differ from Controls**

Ross IL¹, Lacerda M², Pillay TS³, Blom DJ⁴, Johannsson G⁵, Dave JA¹, Levitt NS¹, Haarburger D⁶, van der Walt J-S⁷

¹Division of Endocrinology Department of Medicine University of Cape Town South Africa, ²Department of Statistical Sciences University of Cape Town South Africa, ³Department of Chemical Pathology University of Pretoria South Africa, ⁴Division of Lipidology Department of Medicine, University of Cape Town, ⁵Department of Endocrinology Institute of Medicine Sahlgrenska University Hospital University of Gothenburg Sweden, ⁶Ampath Laboratories Pomona Gauteng Province South Africa, ⁷Astellas Pharma Leiden Netherlands

Introduction

Immediate release conventional hydrocortisone and cortisone acetate are the most commonly used replacement therapies in Addison's disease.

Salivary cortisol in healthy volunteers (a) and patients with Addison's disease (b)

- The cortisol concentration profile and overall quality of conventional hydrocortisone replacement has been examined using urine and serum cortisol, plasma ACTH and salivary cortisol, but all measurements have limitations.
- Salivary cortisone measured in spot samples taken at various times after the administration of hydrocortisone has been shown to correlate with simultaneously measured serum cortisol in patients with Addison's disease.
- We previously reported that salivary cortisol concentrations measured by electric chemiluminescence immunoassay in Addison's patients on hydrocortisone replacement were greater then endogenous cortisol concentrations in healthy subjects.
- Salivary cortisone may be a more accurate measure of serum free cortisol than salivary cortisol, since it is less affected by cortisol binding globulin.
- Liquid chromatography tandem mass spectrometry makes it possible to accurately identify and quantify cortisol and other steroids.

Aim of Study

- To explore the utility of LC-MS/MS in measuring salivary cortisol and cortisone and determining the pharmacokinetic parameters for hydrocortisone and endogenous cortisol production in Addison's disease and controls.
- To explore the correlation of salivary cortisol and cortisone dose in Addison's patients,

hypothesising that salivary cortisone may reflect post dose exposure more accurately than salivary cortisol.

Methods

- Patients were recruited from the South African Addison study database.
- 12 patients were excluded due to concomitant medication, three patients declined to participate and of the 31 patients who agreed to participate, 25 patients provided sufficient samples for analysis.
- 26 healthy control subjects, mostly medical students were enrolled.
- Saliva was collected at 08:00 (immediately before the first hydrocortisone dose in patients), 08:30, 09:00, 09:30, 10:00, 10:30, 11:00, 12:00, 14:00, 16:00, 16:30, 17:30, 19:00, 21:00, 22:00 and 00:00 (16 samples per participant).

	Controls	Patients
Number	26	25
Age (IQR) years	21 (20-22)	48 (38-63)
Gender Female N(%)	13 (50)	20 (80)
BMI (IQR) kg/m ²	24.0 (22.6-28.5)	23.8 (21.5-27.3)
Ethnicity White N (%) Mixed ancestry N (%) Asian N (%) Black N (%)	10 (38) 2 (8) 3 (12) 11 (42)	19. (76) 5. (20) 1. (4) 0 (0)
Total daily dose of hydrocortisone (IQR) mg		25.0 (20.0-25.0)
Total daily fludrocortisone dose(IQR) mg		0.1 (0.05-0.1)
Total daily dose of hydrocortisone adjusted for body weight (IQR) mg/kg		0.36 (0.31-0.42)
Total daily dose of hydrocortisone adjusted for body surface area (IQR) mg/m ²		13.9 (11.8-15.2)
Total fludrocortisone dose adjusted for body weight (IQR) μg/kg		1.3 (0.8-1.5)
Total fludrocortisone adjusted for body surface area (IQR) mg/m ²		0.05 (0.03-0.06)

(a) Healthy volunteers

(b) Patients with Addison's disease

Discussion

- Salivary cortisone was approximately 10-fold higher in controls than in patients
- Salivary cortisol AUC in patients did not differ from controls
- Salivary cortisol and cortisone concentrations in patients were highly variable
- Total daily hydrocortisone dose adjusted for body weight or body surface area were highly correlated with the peak cortisol concentration, our data cannot be utilised to base individual dosing adjustments
- We propose that there is higher activity of salivary 11BHSD2 in healthy controls than patients
- Alternatively, the bidirectional pathway of 11BHSD2 may be down-regulated, whereas 11-beta-hydroxysteroid dehydrogenase type 1 (11BHSD1) may be up-regulated in patients

References

Cortisol			Cortisone			
	Controls	Patients	p- value	Controls	Patients	p- value
Numbers	26	25		26	25	
AUC	37.49 (27.41-52.00)	55.63 (32.91-151.07)	0.098	227.73 (200.10-280.52)	23.65 (6.10-54.76)	<0.00 1
C _{max} nmol/L	8.96 (6.96-12.23)	32.61 (5.75-146.19)	0.013	33.12 (25.97-39.95)	11.11 (2.91-35.85)	0.002
Time to C _{max} hours	0.0 (0.0-0.5)	1.5 (0.5-2.0)	<0.00 1	0.25 (0.00-0.50)	2.5 (2.0-9.5)	<0.00 1

- 1. Simon, N., Castinetti, F., Ouliac, F., Lesavre, N., Brue, T. & Oliver, C. (2010) Pharmacokinetic evidence for suboptimal treatment of adrenal insufficiency with currently available hydrocortisone tablets. Clin Pharmacokinet, 49, 455-463.
- 2. Johannsson, G., Falorni, A., Skrtic, S., Lennernas, H., Quinkler, M., Monson, J.P. & Stewart, P.M. (2014) Adrenal insufficiency: review of clinical outcomes with current glucocorticoid replacement therapy. Clin Endocrinol (Oxf).
- 3. Restituto, P., Galofre, J.C., Gil, M.J., Mugueta, C., Santos, S., Monreal, J.I. & Varo, N. (2008) Advantage of salivary cortisol measurements in the diagnosis of glucocorticoid related disorders. Clin Biochem, 41, 688-692.
- 4. Wong, V., Yan, T., Donald, A. & McLean, M. (2004) Saliva and bloodspot cortisol: novel sampling methods to assess hydrocortisone replacement therapy in hypoadrenal patients. Clin Endocrinol (Oxf), 61, 131-137.
- 5. Maguire, A.M., Ambler, G.R., Moore, B., McLean, M., Falleti, M.G. & Cowell, C.T. (2007) Prolonged hypocortisolemia in hydrocortisone replacement regimens in adrenocorticotrophic hormone deficiency. Pediatrics, 120, e164-171.
- 6. Lovas, K., Thorsen, T.E. & Husebye, E.S. (2006) Saliva cortisol measurement: simple and reliable assessment of the glucocorticoid replacement therapy in Addison's disease. J Endocrinol Invest, 29, 727-731.
- 7. Thomson, A.H., Devers, M.C., Wallace, A.M., Grant, D., Campbell, K., Freel, M. & Connell, J.M. (2007) Variability in hydrocortisone plasma and saliva pharmacokinetics following intravenous and oral administration to patients with adrenal insufficiency. Clin Endocrinol (Oxf), 66, 789-796.
- 8. Ross, I.L., Levitt, N.S., Van der Walt, J.S., Schatz, D.A., Johannsson, G., Haarburger, D.H. & Pillay, T.S. (2012) Salivary Cortisol Day Curves in Addison's Disease in Patients on Hydrocortisone Replacement. Horm Metab Res.
- 9. Perogamvros, I., Keevil, B.G., Ray, D.W. & Trainer, P.J. (2010) Salivary cortisone is a potential biomarker for serum free cortisol. J Clin Endocrinol Metab. 95, 4951-4958
- 10. Perogamvros, I., Owen, L.J., Newell-Price, J., Ray, D.W., Trainer, P.J. & Keevil, B.G. (2009) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Analyt Technol Biomed Life Sci. 877, 3771-3775.
- 11. Vieira, J.G., Nakamura, O.H. & Carvalho, V.M. (2014) Determination of cortisol and cortisone in human saliva by a liquid chromatography-tandem mass spectrometry method. Arg Bras Endocrinol Metabol, 58, 844-850.
- 12. Tomlinson, J.W. & Stewart, P.M. (2001) Cortisol metabolism and the role of 11beta-hydroxysteroid dehydrogenase. Best Pract Res Clin Endocrinol Metab, 15, 61-78.

