Concentrations of the Vitamin D Metabolite 1,25(OH)2D and its relationship to inflammatory and metabolic parameters in diabetes type 2 S. Canecki-Varžić, I. Prpić-Križevac, I. Bilić-Ćurčić

Clinical Hospital Center Osijek

BACKGROUND

While 25-hydroxy-vitamin D (25(OH)D) has been thoroughly investigated, the role of active vitamin D metabolite1,25(OH)₂D in a metabolic syndrome still remains unclear.

OBJECTIVE

METHODS

Anthropometric variables, serum 25(OH)D, 1,25(OH)₂D, C-reactive protein (CRP), fibrinogen, PAI-1, fasting glucose, fasting insulin, and HbA1c were measured in 125 postmenopausal women with T2DM. Insulin resistance was estimated by homeostasis model assessment-HOMA-IR and beta-cell function by HOMA-B. A total of 125 diabetic patients were divided by BMI in normal weight group (n=22, BMI 22,7±1,5 kg/m²) and adipose group (n=93, BMI 32,2±5,8 kg/m²). Control group consisted of healthy obese postmenopausal women (n=46, BMI 34,9±6 kg/m²).

The aim of our study was to determine the association between 25(OH)D and $1,25(OH)_2D$ levels and several metabolic parameters and inflammatory markers in postmenopausal women with diabetes type 2 (T2DM).

RESULTS

Serum 25(OH)D concentrations were highest in the lean diabetics compared with obese diabetics and control subjects (p<0,0007) and were significantly associated with fasting glucose, insulin, HOMA-B, BMI and PAI-1. In diabetic patients 25(OH)D levels were positively associated with HDLC (p<0,01) and negatively with triglycerides (p<0,04) and PAI-(p<0,001). Serum $1,25(OH)_2D$ concentrations were significantly higher in control obese subjects (77,4±17,0 nmol/l) compared with adipose diabetics (p<0,001), with no difference in relation to lean diabetics. Fasting glucose and HbA1c negatively correlated (p<0,01), whereas cholesterol and LDLC positively correlated (p<0,01) with $1,25(OH)_2D$. Furthermore, 25 (OH)D correlated with PAI-1 in all subjects while 1,25(OH)₂D correlated with fibrinogen but only in obese control subjects.

Table 1. Baseline characteristics of study subjects

	T2DM	T2DM	Control	
	obese	Normal weight	group	p
			Obese group	
n	93	22	46	
Age (yr)	64,7±9,5	65,6±9,7	58,1±9,4	0,0007
Waist circumference(cm)	100,6±11,4	85,5±7,6	102,9±12,9	0,0000
BMI (kg/cm ²)	32,2±5,8	22,7±1,5	34,9±6,1	0,0000
Fasting glucose (mmol/l	12,1±3,9	11,3±4,9	4,9±0,7	0,0000
HbA1c (%)	10,0±2,2	10,4±1,9	5,90±0,25	0,0000
Fasting insulin (mIU/l)	$11,9\pm 8,7$	6,8±4,2	14,4±11,2	0,0000
HOMA-IR	6,3±3,5	3,5±1,6	2,9±1,4	0,0000
HOMA-B	54,9±103,8	70,2±95,3	214,3±139,3	0,0000
Cholesterol (mmol/l)	5,24±1,44	5,36±1,26	6,37±1,32	0,0000
Triglycerides (mmol/l)	2,36±1,22	1,38±0,61	$1,81\pm1,15$	0,0002
HDL –C (mmol/l)	$1,20\pm0,27$	1,41±0,31	$1,41\pm0,31$	0,0002
LDL –C (mmol/l)	3,04±1,23	3,29±1,12	4,22±1,15	0,0000
25(OH)D (nmol/l)	59,7±30,7	80,13±42,8	48,51±21,6	0,008
PAI-1 (U/l)	4,05±2,03	2,67±1,18	3,47±1,91	0,011
Fibrinogen	4,17±0,9	4,04±0,76	$3,84{\pm}0,85$	NS
CRP (nmol/l)	3,6±2,3	2,6±2,8	4,5±2,6	0,01

25(OH)D	DM		Control	All subjects	
	R	p	group		
GUK	,156	NS	NS	0,251	0,004
BMI	-0,186	0,032	NS	-,2334	0,003
Insulin	-,186	0,04	NS	-,1960	0,012
HOMA-B	-,209	0,053	NS	-,2885	0,001
HDL	,2408	0,01	NS	,141	0,069
trigliceridi	-,194	0,04	NS		
PAI-1	-,3065	0,001	NS	-,2350	0,003

Correlation of 25(OH)D 1 and 25(OH)₂D with metabolic and inflammatory parameters

1,25(OH) ₂ D	DM R p	Control group	All subjects	
GUK	NS	NS	-,2508 0,005	
HOMA-B	NS	NS	,1970 0,031	
kolesterol	NS	NS	,2182 0,009	
LDL	NS	NS	,2525 0,002	
fibrinogen	NS	-,3197 0,031		
HbA1c	NS	NS	-,2816 0,001	

CONCLUSION

nes Bilic-Curcic

Conclusions: In type 2 diabetic women low serum 25(OH)D and $1,25(OH)_2D$ levels were associated with atherogenic dyslipidemia, glucose parameters and low grade inflammation. The active hormonal form of vitamin D, $1,25(OH)_2D$ correlated with cholesterol, LDLC and fibrinogen, while 25(OH)D correlated with triglycerides ,HDLC and PAI-1, suggesting that there may be an independent mechanism of action for $1,25(OH)_2D$ in relation to metabolic dysregulation.

Diabetes (to include obesity, pathophysiology & epidemiology)

