

IS EARLY MEASUREMENT OF A1c USEFUL FOR THE PREDICTION OF TREATMENT RESPONSE IN TYPE 2 DIABETES?

Michaela Luconi¹, Besmir Nreu², Jinous Samavat¹, Maria Lorubbio³, Agostino Ognibene³, Matteo Monami², Edoardo Mannucci²

¹Dept. Clinical and Experimental Biomedical Sciences-University of Florence, Florence, Italy- ²Division of Diabetology and ³General Laboratory-Careggi Hospital, Florence, Italy-michaela.luconi@unifi.it

AIM OF THE STUDY

Can early measurement of A1c and Glycated Albumin at 15-30 days predict 3-month A1c variation?

INTRODUCTION

A timely assessment of response to treatment in type 2 diabetic (T2DM) patients initiating a pharmacological treatment could be useful for avoiding longer-term use of ineffective drugs.

A1c, which is correlated with average glucose of the previous 3 months [1], is currently considered the gold standard for monitoring glucose control. Effects of variations of treatment are usually assessed through A1c determination after 3 or more months.

GA has been proposed as an indicator of shorter-term (2-week) glucose control [2], although standardization of measurement methods has not been achieved yet [3].

	HbA1c (mmol/mol) and GA (%)	Р
A1c baseline	59.0±12.0	-
GA baseline	31.9±11.3	-
A1c 15 days	56.0±7.8	<0.01
GA 15 days	28.8±10.8	0.03
A1c 30 days	53.0±7.0	<0.001
GA 30 days	27.7±9.8	<0.001
A1c 90 days	50.0±7.2	<0.001
GA 90 days	25.5±9.8	0.004

Tab.1: Mean±SD values of A1c and GA at baseline, 15, 30 and 90 days. P values for A1c and GA vs. respective baseline values after paired Student's t test

Delta vs baseline	Total n=27	P	Non Responder n=7	Р	Responder n=20	Р
dA1c 15 days	-4.47±7.45	0.01	0.71±2.69	ns	-4.75±5.81	0.003
dA1c 30 days	-7.17±9.10	0.001	0.00±2.58	ns	-6.47±6.69	0.001
dA1c 90 days	-12.9±15.55	0.001	1.57±1.27	ns	-12.7±12.3	<0.001
dGA 15 days	-3.11 ± 6.91	0.03	1.29±2.81	ns	-4.58±7.38	0.012
dGA 30 days	-4.83±6.16	0.001	-2.87±4.36	ns	-5.57±6.61	0.002
dGA 90 days	-6.28±9.54	0.004	-4.80±10.39	ns	-6.83±10.0	0.008

Tab.2: Mean±SD variations of A1c and GA from baseline. Responders (74%) and nonresponders to the therapy have been defined by variation of A1c at 90 days <0 or ≥ 0, respectively. P values for A1c and GA variations after paired Student's t test

STUDY DESIGN

27 metformin-treated patients with type 2 diabetes initiating a pharmacological treatment other than insulin (16M:11F, aged 64.7±10.1 years; diabetes duration 8.6±8.5 years)
The prescribed treatment was maintained throughout the 3-month follow-up. A1c and GA were measured at baseline, and every 15 (±3) days for 3 months.

GLYCATED HEMOGLOBIN A1c (mmol/mol): HPLC method on fresh total blood with Variant-II-turbo (Bio-Rad)

GLYCATED ALBUMIN GA (% glycated on total albumin): colorimetric LUCICA-GA-LTM kit (Asahi Kasei Pharma, Tokyo, Japan) with Dimension Vista 1500 (Siemens Healthcare) instrument on frozen sera (4)

EARLY VARIATIONS AT 15 DAYS OF A1c BETTER THAN GA STRONGLY CORRELATE WITH 3-MONTH VARIATION OF A1C

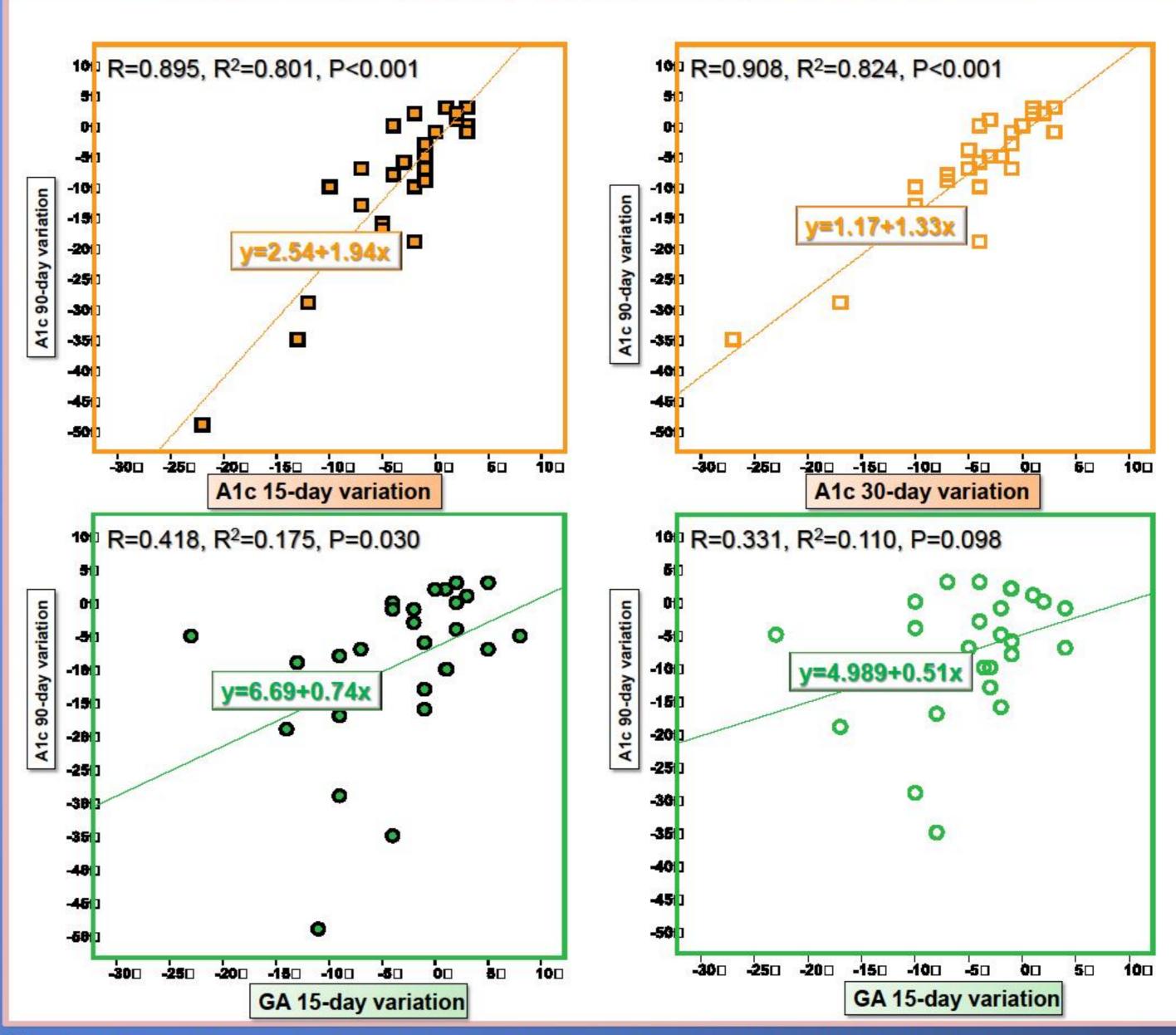


Fig. 1: Correlation of 15- and 30-day variation of A1c and GA with 90-day A1c variation. R, R2, P and regression equations are indicated.

DISCUSSION

Variations of A1c measured as early as 15 days from the start of treatment can accurately predict 3-month results. Conversely, GA does not appear to be similarly effective in particular at 30-days. This could be partly due to the lack of standardization of laboratory methods for GA, which has been only recently expressed as fraction of glycated over total albumin [2,3]; in addition, transient fluctuations of glucose control could have a greater impact on GA, affecting its predictive potential. Our data suggests that variation of A1c may represent a more stable short-time predictor of therapeutic response than GA.

REFERENCES

- 1. Rohlfing CL et al. Diab Care 2002
- 2. Koga M. Adv Clin Chem 2011
- 3. Tahara Y & Shima K. Diab Care 1995

TAKE HOME MESSAGE
THIS PILOT STUDY SUGGESTS THAT AN EARLY (15-DAY) DETERMINATION OF A1c
CAN BE OF HELP FOR THE RAPID ASSESSMENT OF TREATMENT RESPONSE IN T2DM

