Contribution of Haptoglobin and MTHFR polymorphisms to hyperhomocysteinemia and hypercysteinemia in type 2 diabetic patients

Ana Valente1,2,3, Manuel Bicho4,6, Ana Garcia3, Conceição Gonçalves3, Rui Duarte3, João F. Raposo3, Helena S. Costa1,6

1 Research & Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
2 Departamento de Ciências da Nutrição, Universidade Atlântica, Faculdade da Pólvora de Barreiro, PTU01, Barreiro, Portugal
3 Laboratory of Genetics, Institute of Health Ambiente, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
4 Institute of Investigation and Technological Innovation, Renana Cabral, Rua do Salitre 118-120, 1250-230 Lisboa, Portugal
5 Association Proteger do Diabéticos de Portugal, Rua do Salitre 118-120, 1250-230 Lisboa, Portugal
6 REQUIMTE/LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge Viterbo Ferreira 226, 4050-115 Porto, Portugal

Introduction

There is a lack of epidemiological data on the distribution of haptoglobin and C677T of MTHFR polymorphisms in Caucasians type 2 diabetic patients [1]. The combination of these two genetic factors to hyperhomocysteinemia and hypercysteinemia can be useful to prevent cardiovascular events and to reduce public health costs.

Aim

To evaluate the contribution of haptoglobin and C677T polymorphisms for hyperhomocysteinemia and hypercysteinemia in Portuguese type 2 diabetic patients with and without angiopathy.

Methods

An observational analytical case-control study in 150 Portuguese type 2 diabetic patients (40-75 years) was performed. The study population was divided into two groups: group I - 75 patients with angiopathy, group II - 75 patients without angiopathy. Inclusion criteria for both groups were: Caucasians and diagnosis of type 2 diabetes for at least 1 year. Additional criterion for group I was the presence of at least one of the following complications: cerebrovascular disease, ischemic stroke, peripheral vascular disease or retinopathy. Homocysteine and cysteine plasma levels were obtained by validated HPLC methods [2]. The haptoglobin polymorphism was identified by polyacrylamide gel electrophoresis and peroxidase staining, and C677T MTHFR polymorphism by PCR and RFLP. Statistical analysis was performed by odds ratio calculation.

Results

The baseline characteristics of diabetic patients studied are presented in Table 1. The Hp 2-1 was the most prevalent phenotype (Figure 1). The CT + TT genotypes were more frequent in group I (46.4%, 72.2%) than in group II (41.5%, 6.2%) (Figure 2). Homocysteine and cysteine mean concentrations according to Hp and MTHFR genotypes are presented in Figures 3, 4, 5 and 6, respectively. The diabetic patients of group I with the genotypes Hp 2-1 + Hp 2-2 had a higher probability to have hyperhomocysteinemia (OR: 4.33, p = 0.014) when compared to diabetic patients without angiopathy (Table 2). The presence of C677T + 677TT genotypes in group I increased five times (OR: 5.37; p = 0.040) the probability to have hyperhomocysteinemia compared to group II (Table 3). The association between Hp 2-1 and C677T polymorphisms increased the probability (OR: 4.40; p = 0.006) to have hyperhomocysteinemia in group I (Table 4).

Conclusion

The haptoglobin 2-1 and C677T of MTHFR polymorphisms are associated with a predisposition to have hyperhomocysteinemia and their combined effect increased the probability to have hyperhomocysteinemia. These polymorphisms should be considered risk factors for angiopathy development of Caucasians type 2 diabetic patients.

REFERENCES


This study was funded by POCI/09/2009/04 from the Portuguese Foundation for Science and Technology (FCT). The authors gratefully acknowledge I.S.M.A.B. for financial support. Ana Valente is grateful for the PhD grant, number (PDI/00473/2004/04), and the research grant, both supported by FCT.

Fig. 1 - Haptoglobin phenotype frequency in study population.

Fig. 2 - Frequency of C677T MTHFR genotype in study population.

Fig. 3 - Mean plasma levels of homocysteine according to haptoglobin phenotype.

Fig. 4 - Mean plasma levels of cysteine according to haptoglobin phenotype.

Fig. 5 - Mean plasma levels of homocysteine according to C677T polymorphism of MTHFR.

Fig. 6 - Mean plasma levels of cysteine according to C677T polymorphism of MTHFR.

Table 1: Baseline clinical and sociodemographic characteristics of the study population.

Table 2: Effect of Hp 2-1 + 2-2 genotypes on the variation of homocysteine and cysteine plasma levels.

Table 3: Effect of C677T and 677TT genotypes of MTHFR on the variation of homocysteine and cysteine plasma levels.

Table 4: Combined effect of Hp 2-1 polymorphism and C677T genotype of MTHFR on the variation of homocysteine and cysteine plasma levels.