Enzymes of the vitamin K cycle and progression of calcification in the vessel wall

Natascha Schweighofer 1, Aigelsreiter A.2, Trummer O.1, Graf-Rechberger M.2, Hacker N.1, Kniepeiss D.3, Wagner, D.3, Stiegler P.3, Pieber T.1, Müller H.3, Obermayer-Pietsch B.1

1Department of Internal Medicine, Division of Endocrinology and Metabolism, 2Institute of Pathology, 3Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Austria

Introduction and aim:
Vascular calcification is a leading cause of cardio- and cerebrovascular diseases. Vitamin K metabolites, especially K1 and MK-4, are associated with decreased vascular calcification particularly in patients with chronic kidney disease. We investigate the expression of components of the vitamin K cycle (VKC) and the MK-4 synthesis (MKS) in aorta and bone to identify differences in expression patterns during atherosclerosis (AS) stages in vascular tissue and compare these profiles in both tissue types.

Material and methods:
Gene expression levels of components of the VKC (VKOR, VKORC11, GGCX, the chaperone CALU) and the MK5 enzymes NQ01 and UBIAD1 were examined with predesigned TaqMan gene expression assays on a LC480 system in aorta and bone of 26 brain dead organ donors. Beta actin was used as a reference gene and relative Cp values were obtained by division. 

Calcification stages were determined histologically and were assigned to one of three groups: 1. no changes (unaffected vessels), 2. intima thickening (more than one-fold thickening of the intima without calcification), 3. intima calcification (one or more calcification spots are present).

Summary:
- We show that bone and aorta express the enzymes of the vitamin K cycle.
- Bone and aorta express the enzymes necessary to synthesize MK-4.
- We demonstrate that different gene expression patterns exist in AS progression in bone and aorta.
- During AS progression gene expression patterns changes in the aorta but not in bone.
- Gene expression of components of the VKC and MKS differ between bone and aorta only in the (later) stage of vessel calcification.

Conclusion:
Gene expression of enzymes of vitamin K metabolism changes during calcification of the vessel wall. These data might imply a more complex role of vitamin K metabolizing enzymes in vascular calcification than previously known.

Fig 1: The VKC enzymes VKORC11, VKOR, GGCX and the chaperone CALU are expressed in aorta and bone. Ao: aorta; B: bone; error bars: +/- 2 standard deviations.

Fig 2: Gene expression of VKC components in aorta in 3 AS stages: Gene expression of VKORC11, VKOR and CALU is significantly lower in the stage of intima thickening than in the unchanged vessel. Gene expression of VKORC11 and CALU is increased in the stage of intima calcification compared to intima thickening.

Fig 3: Changes in gene expression in 3 AS stages: There are no changes in gene expression during AS progression. Gene expression of VKOR, VKORC11 and CALU (p=0.040, p=0.023, p=0.038) in aorta is significantly and of GGCX (p=0.060) by trend different in the 3 AS stages. Ao: aorta, black frames; B: bone, light grey frames.

Fig 4: Gene expression of VKC components in aorta and bone during intima calcification: Gene expression of GGCX and CALU is in bone significantly decreased compared to calcified aorta. aorta n=8; bone n=5.

Fig 5: The MK5 enzymes NQ01 and UBIAD1 are expressed in aorta and bone. Ao: aorta; B: bone, error bars: +/- 2 standard deviations.

Fig 6: Gene expression of MK5 components in aorta in 3 AS stages: Gene expression of UBIAD1 and NQ01 did not differ in the three AS stages. Unchanged vessel: n=3, intima thickening n=10 and intima calcification n=10.

Fig 7: Changes in gene expression in 3 AS stages: There are no changes in gene expression in bone during AS progression. Gene expression of UBIAD1 and NQ01 is not different in bone and aorta in the 3 AS stages. Ao: aorta, black frames; B: bone, light grey frames.

Fig 8: Gene expression of MK5 enzymes in aorta and bone during intima calcification: Gene expression of NQ01 in bone significantly lower than in the calcified aorta. aorta n=8; bone n=5.