The effect of the type of the bariatric surgery in the lipid profile: an age, sex, body mass index, and excess weight loss matched study

Cunha FM1,2, Oliveira J1,2, Preto J1, Saavedra A1, Costa MM1, Lai E1,2, Magalhães D1, Bettencourt-Silva R1, Freitas P1,2, Varela A1,2, Carvalho D1,2

1Serviceo de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar de São João EPE; 2Faculdade de Medicina da Universidade do Porto; 3Serviceo de Cirurgia Geral do Centro Hospitalar de São João

Background

Dyslipidemia is common in obese patients. High levels of triglycerides (TG), and low density lipoprotein (LDL) cholesterol, and low levels of high density lipoprotein (HDL) cholesterol are frequently encountered in obesity.

Bariatric surgery improves the lipid profile. A still unanswered question is whether this improvement is merely weight dependent or also results from factors inherent to specificities of the bariatric procedure itself.

We aimed to study the lipid profile 1 year after bariatric surgery and compare its changes between the different procedures in matched patients aged in sex, sex, initial weight and for excess weight loss (EWL).

Methods


Body mass index (BMI) = weight (Kg)/height (m)²

EWL: [(excess weight - weight loss at 1 year)/excess weight] x 100

Type 2 Diabetes mellitus was defined by a fasting glucose ≥126 mg/dL, a 2-hour plasma glucose ≥200mg/dL during a 75g oral glucose tolerance test, an Hba1c>6.5%, or the use of oral hypoglycaemic agents or insulin.

Glucometer filtration rate was estimated using the Modification of Diet in Renal Disease formula

TC, HDL and TG were measured directly in the plasma, LDL was calculated using the Friedwald formula.

Percentage of variation (%Δ) of each of the lipid profile parameters: [(pre-surgical value – value at 1 year)/pre-surgical value] x 100; except for HDL=[(value at 1 year – pre-surgical value)/pre-surgical value] x 100.

Patients were matched for age (5 years), sex, pre-surgical BMI (2 Kg/m²) and EWL (5%).

The baseline characteristics were compared: χ² for categorical variables, One-way ANOVA for normally distributed continuous variables, and Kruskal-Wallis test for skewed continuous variables.

Comparison between baseline and 1-year lipid profile, its variation (Δ) and %Δ: paired samples t test for normally distributed continuous variables and Wilcoxon test for non-normally distributed continuous variables.

Results

Median age: 41 (35-52) years; 11.8% were male. BMI at the time of surgery: 44.0 ± 4.6 Kg/m² and 32.1 ± 4.4 Kg/m² at 1 year. EWL at 1 year: 64.2 ± 18.9%.

Table 1 – Baseline characteristics of patients submitted to bariatric surgery

<table>
<thead>
<tr>
<th></th>
<th>AGB (n=229)</th>
<th>AGB (n=80)</th>
<th>RYGB (n=94)</th>
<th>SG (n=55)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins, n (%)</td>
<td>50 (22.0)</td>
<td>14 (17.7)</td>
<td>23 (24.7)</td>
<td>13 (23.6)</td>
<td>0.51</td>
</tr>
<tr>
<td>Statins 1 year, n (%)</td>
<td>31 (15.0)</td>
<td>10 (14.3)</td>
<td>8 (9.1)</td>
<td>13 (23.6)</td>
<td>0.02</td>
</tr>
<tr>
<td>Fibrates, n (%)</td>
<td>14 (6.2)</td>
<td>5 (6.3)</td>
<td>7 (7.5)</td>
<td>2 (3.6)</td>
<td>0.64</td>
</tr>
<tr>
<td>Fibrates 1 year, n (%)</td>
<td>2 (1.0)</td>
<td>1 (1.4)</td>
<td>1 (1.1)</td>
<td>0.0 (0.0)</td>
<td>0.72</td>
</tr>
<tr>
<td>T2DM, n (%)</td>
<td>48 (21.0)</td>
<td>17 (21.3)</td>
<td>22 (23.4)</td>
<td>9 (16.4)</td>
<td>0.59</td>
</tr>
<tr>
<td>Pre-diabetes, n (%)</td>
<td>107 (46.7)</td>
<td>36 (45.0)</td>
<td>44 (46.8)</td>
<td>27 (49.1)</td>
<td>0.90</td>
</tr>
<tr>
<td>Hba1c, %</td>
<td>5.7 (5.4-6.0)</td>
<td>5.7 (5.4-6.0)</td>
<td>5.7 (5.4-6.1)</td>
<td>5.6 (5.3-6.0)</td>
<td>0.46</td>
</tr>
<tr>
<td>Hba1c 1 year, %</td>
<td>5.3 (5.1-5.6)</td>
<td>5.3 (5.1-5.5)</td>
<td>5.3 (5.1-5.7)</td>
<td>5.3 (5.0-5.6)</td>
<td>0.66</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>94 (41.4)</td>
<td>30 (38.0)</td>
<td>44 (47.3)</td>
<td>20 (36.4)</td>
<td>0.32</td>
</tr>
<tr>
<td>TSH (mIU/L)</td>
<td>1.77 (1.34-2.59)</td>
<td>1.68 (1.22-2.54)</td>
<td>1.99 (1.36-2.82)</td>
<td>1.63 (1.36-2.54)</td>
<td>0.22</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
<td>86 ± 21</td>
<td>82 ± 17</td>
<td>85 ± 21</td>
<td>90 ± 25</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* p for comparison between baseline and 1 year values < 0.005; RYGB: gastric bypass; AGB: adjustable gastric banding; TC: total cholesterol, HDL: high-density lipoprotein cholesterol, LDL: low-density lipoprotein cholesterol, T2DM: type 2 diabetes mellitus.

Table 2 – Comparison of the lipid profile between the various bariatric surgery types in age-, sex-, BMI-, EWL-matched patients

<table>
<thead>
<tr>
<th></th>
<th>AGB (n=72)</th>
<th>RYGB (n=72)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC, mg/dL</td>
<td>208 ± 40</td>
<td>200 ± 39</td>
<td>0.21</td>
</tr>
<tr>
<td>TC 1 year, mg/dL</td>
<td>185 ± 31*</td>
<td>193 ± 44</td>
<td>0.17</td>
</tr>
<tr>
<td>ΔTC, mg/dL</td>
<td>23 ± 37</td>
<td>7 ± 44</td>
<td>0.008</td>
</tr>
<tr>
<td>%ΔTC</td>
<td>9.1 ± 17.9</td>
<td>1.8 ± 20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>HDL, mg/dL</td>
<td>50 ± 11</td>
<td>51 ± 11</td>
<td>0.52</td>
</tr>
<tr>
<td>HDL 1 year, mg/dL</td>
<td>59 ± 13*</td>
<td>56 ± 10*</td>
<td>0.15</td>
</tr>
<tr>
<td>ΔHDL, mg/dL</td>
<td>9 ± 10</td>
<td>5 ± 10</td>
<td>0.03</td>
</tr>
<tr>
<td>%ΔHDL</td>
<td>19.3 ± 21.7</td>
<td>13.9 ± 22.8</td>
<td>0.10</td>
</tr>
<tr>
<td>LDL, mg/dL</td>
<td>135 ± 32</td>
<td>124 ± 32</td>
<td>0.06</td>
</tr>
<tr>
<td>LDL 1 year, mg/dL</td>
<td>108 ± 25*</td>
<td>118 ± 37</td>
<td>0.08</td>
</tr>
<tr>
<td>ΔLDL, mg/dL</td>
<td>27 ± 32</td>
<td>10 ± 35</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>%ΔLDL</td>
<td>17.2 ± 25.0</td>
<td>3.2 ± 26.0</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>TG, mg/dL</td>
<td>144 ± 72</td>
<td>149 ± 77</td>
<td>0.54</td>
</tr>
<tr>
<td>TG 1 year, mg/dL</td>
<td>95 ± 36*</td>
<td>98 ± 48*</td>
<td>0.91</td>
</tr>
<tr>
<td>ΔTG, mg/dL</td>
<td>49 ± 61</td>
<td>49 ± 61</td>
<td>0.79</td>
</tr>
<tr>
<td>%ΔTG</td>
<td>26.7 ± 28.4</td>
<td>26.7 ± 28.4</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Conclusions

RYGB is the only bariatric surgery that reduces TC and LDL cholesterol levels in age-, sex-, BMI-, and EWL-matched patients. All 3 procedures improved TG and HDL similarly when the confounding effect of weight loss is eliminated.

Improvements in HDL and TG are probably attributable to weight loss. Decreases in LDL and TC appear not to be completely attributable to weight reduction; factors inherent to the specific surgical procedure may play a role.