Parental obesity in association with offspring cognitive and psychomotor development at 4 years of age: The Mother Child "Rhea" Cohort in Crete, Greece.

Vasiliki Daraki1, 2, Vaggelis Georgiou1, Katerina Koutra1, Andriani Kyrkilaki1, Mariza Kampouni1, Katerina Sarri1, Maria Vassilaki1, Stathis Papavasiliou2, Manolis Kogevinas3, Leda Chatzi1

1Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece, 2Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Crete, Heraklion, Greece, 3National School of Public Health, Athens, Greece

BACKGROUND

Early life adversity (specifically stress, undernutrition and infection) increases the vulnerability to develop psychopathologies and cognitive decline later in life [1]. Animal studies suggest that maternal obesity may impact fetal brain structure and function and increase long-term susceptibility to neurodevelopmental and neuropsychiatric disorders probably through inflammatory mechanisms [2]. Human studies have shown an association between maternal obesity and adverse neurodevelopmental outcomes in offspring, including lower general cognitive abilities and an increased incidence of neuropsychiatric disorders probably through inflammatory mechanisms [2]. It is also unclear if reported associations are due to genetic background or intrauterine mechanisms, as a limited number of studies have examined so far the role of paternal pre-conception BMI in offspring neurodevelopment [4,5].

OBJECTIVES

To investigate the association of maternal and paternal obesity status with offspring cognitive and psychomotor development at 4 years of age using data from a longitudinal, prospective pregnancy cohort, "Rhea" study in Crete, Greece.

METHODS


Analytic sample: 652 mother-child pairs after excluding twin pregnancies, women with pre-gestational diabetes and subjects with missing data on exposure and outcome variables.

Exposure assessment: Pre-pregnancy maternal body mass index (BMI) and paternal BMI were calculated at the first prenatal visit (mean: 12 weeks, SD: 1.5) by the formula weight/height². Parents with BMI ≥25 kg/m² were classified as overweight or obese.

Outcome assessment: Offspring neurodevelopment at 4 years was assessed by means of the McCarthy Scales of Children’s Abilities (MSCA), which contains six scales: Verbal, Perceptual-Performance, Quantitative, General Cognitive, Memory and Motor scale. Alternative outcome scales for executive function and cognitive functions of posterior cortex were also created by reorganizing the tasks of MSCA in accordance with their association with specific neurocognitive function 2) Emotional and behavioral development at 4 years was assessed by means of Strengths and Difficulties Questionnaire (SDQ) and Attention Deficit Hyperactivity Disorder (ADHD) Test.

Data analysis: Multivariable linear regression models were used to estimate the effect of pre-pregnancy BMI and paternal BMI on child neurodevelopment at 4 years of age after adjusting for multiple confounders. Effect modification by child’s sex, maternal smoking during pregnancy, and gestational weight gain were assessed through inclusion of the interaction terms in the models (statistically significant effect modification if p-value<0.05) and stratified analyses.

RESULTS

Maternal obesity pre-pregnancy was associated with reduced cognitive and developmental scores at 4 years of age.

No association was found between pre-pregnancy BMI and paternal BMI on child neurodevelopment at 4 years of age after adjusting for multiple confounders.

Paternal obesity was not associated with offspring cognitive and behavioural development at 4 years of age.

CONCLUSIONS

Maternal pre-pregnancy BMI was associated with reduced cognitive development at preschool age. This association appeared more likely to be due to intrauterine mechanisms than shared family and social characteristics.

REFERENCES