An Information Theoretic Approach to Gonadotropin-Releasing Hormone (GnRH) Signalling: ERK-mediated feedback loops control hormone sensing **W**University of

Kathryn L Garner¹, Rebecca M Perrett¹, Margaritis Voliotis², Thanh Pham³, Krasimira Tsaneva-Atanasova⁴ and Craig A McArdle¹ bioscience for the future

¹Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol. ²School of Mathematics, University of Bristol. ³Texas A & M University. ⁴Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter.

References

1. Voliotis M et al. (2014) Proc.Natl.Acad.Sci. (USA) E326

BRISTOL

- 2. Caunt C et al. (2008) J Biol Chem 283: 26612
- 3. Armstrong S et al. (2010) J Biol Chem 285: 24360

Acknowledgements

This work was funded by a Project Grant from the BBSRC (BB/J014699/1)

Conclusions

- GnRH signalling pathways can thought of as noisy communication channels.
- MI can be used to measure the reliability of hormone sensing via these channels.
 - Reliability of hormone sensing is influenced by slow and fast ERK-mediated feedback loops.
 - Single cells do not sense GnRH reliably (MI <1 bit).