Inter-correlation between Placental Genes Regulating Fetal Glucocorticoid Exposure and IGF2 in Maternal Severe Obesity: A Mechanism for Higher Birth Weight?

Mina TH, Riley SC, Norman JE, Reynolds RM

Tommy's Centre for Fetal and Maternal Health, The University of Edinburgh

INTRODUCTION

- 1)Exposure to prenatal maternal obesity is associated with high birth weight.
- 2)One potential biological mechanism is altered placental regulation of fetal growth.
- 3)Excess fetal glucocorticoid exposure associates with lower birth weight and placental Insulin-like Growth Factor (IGF2) may be modulated by glucocorticoids.

Hypothesis: The expression profiles of placental genes leading to reduced glucocorticoid exposure and increased IGF2 mRNA level correlate with higher birth weight in severely obese pregnancy.

MATERIALS & CLINICAL PROTOCOL

No PRETERM BIRTH

INFANT ANTHROPOMETRY

Birth weight, birth length, BMI and their British Standard deviation-scores (SDS) (Pan & Cole 2012). This allowed the adjustment of gestational age & gender.

PLACENTAL GENE EXPRESSION ANALYSIS

RT-QPCR was performed in triplicates with RocheLightcycler[™]. YWHAZ and TBP were used as composite housekeeping genes. RNA integrity was verified with Agilent Bioanalyser (Mina et al., 2015).

exposure 11β -HSD1 11β -HSD2 NR3C1- α (Glucocorticoid receptor)

IGF2 IGF2R (IGF2 receptor)

RESULT 1: MEASUREMENTS AT BIRTH

SO **Anthropometry Output** LEAN Birth weight (grams) 3457.79 (433.54) 3578.16 (643.39) 0.307 Birth length (cm) 52.91 (2.59) 54.13 (3.48) 0.11 Birth BMI (Kg/m²) 12.28 (1.17) 12.00 (1.92) 0.477 <u>0.096</u> SDS birth weight 0.06 (0.92) 0.44 (1.18) SDS birth length 0.151 1.23 (1.17) 1.72 (1.60) SDS BMI -0.91 (1.10) -0.95 (1.40) 0.903

Data displayed = mean (SD). P values were obtained from student's T-test. Length of gestational age was not significantly different by maternal obesity status.

- Infants of SO pregnancy in this subgroup were not heavier, longer and/or had higher higher BMI.
- Due to the significant difference in fetal sex composition it is important to adjust for sex in the downstream analysis.

RESULT 2: OVERALL GENE EXPRESSION

- The placental gene expressions did not differ according to maternal obesity status.
- The strong inter-correlation data were consistent with the data from our previous work (Mina et al., 2015).

RESULT 3: CORRELATION BETWEEN ANTHROPOMETRIC OUTPUT & GENE EXPRESSION

DISCUSSION, CONCLUSION, FURTHER STUDIES

- Our inter-correlation findings in the placental mRNA profiles support the biological findings in elsewhere that IGF2 family could be downstream targets of glucocorticoid signalling (Vaughan et al., 2012)
- The correlation data between placental genes and body compositions at birth are in line with our hypothesis.
- Works to expand the placental pool to enable association analysis are currently undertaken.

ACKNOWLEDGEMENT

We acknowledge mother and baby volunteers, the team of antenatal metabolic clinic at the Royal Infirmary of Edinburgh, the team of Edinburgh Reproductive Tissue Bio-bank, and our funders as specified above.

REFERENCE

- Mina T, Raikkonen K, Riley S, Norman J, Reynolds R., 2015. Psychoneuroendocrinology 59: 112-122.
- Vaughan O, Sferuzzi-ferri A, Fowden A., 2012. J Physiol 590(21):5529-5540.