Pre-operative assessment for sleep apnoea in patients referred for bariatric surgery : the usefulness of various clinical screening tools

C Martinou¹, UA Nayak¹, GI Varughese¹, A Thomas², M Allen², L Varadhan¹

¹Dept of Diabetes & Endocrinology, ²Dept of Respiratory Medicine University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK

Introduction

- Obstructive sleep approve (OSA) is widely prevalent with obesity; its effect on OSA is multifactorial
- I SD increase in BMI increases risk of OSA by 4 fold (Young et al, NEJM 1993)
- The prevalence of OSA correlates well with the BMI; however the severity of OSA does not correlate well to the BMI in severely obese; the risk of severe OSA in these patient is as high as 95% (Serafini et al, Obes surgery

Results

- •54% had severe OSA requiring CPAP treatment
- 12% had mild OSA which was conservatively managed
- 34% did not have any sleep apnoea
- There was a small but positive correlation between BMI and presence of OSA (r=0.2) and the severity of OSA (r=+0.15)

2001)

- There is a significant overlay of OSA with Obesity hypoventilation syndrome (OHS) in this cohort and it is common to assume that managing one could complement the other
- Epworth sleepiness scale (ESS) is a common screening tool for day time sleepiness, a complication of OSA
 - Good at predicting OSA but not predicting its severity (Serafini, Obes Surg) 2001)
 - Good positive correlation with AHI index (Yeh, Obes Surg 2010)

STOP BANG

- in general practice a cut off of 3 is used; in bariatric practices generally a cut off of 5 is recommended
- \ge 5 correlated well with severe to very severe OSA (Chung, BJA 2011)
- Due to the evolving and dynamic nature of the bariatric service and modifications to its framework at our LHE, the guidelines at our hospital included a wide range of different clinical practice with time. This includes a combination of
 - ABG : with triggers of saturation <92% or pO2 <8 or pCO2 >6
 - STOP BANG Score

Tests	N=	Sensitivity %	Specificity %	PPV %	NPV %
Sats <92%	72	8	86	57	30
pCO2 >6	77	20	87	79	30
pO2 <8.0	77	11	86	67	28
pO2<10	77	71	55	80	43
STOPBANG ≥3	39	100	7	66	100
STOPBANG ≥5	39	76	50	73	54
ESS >10	74	33	59	31	21
FEV1/VC <70	43	7	77	40	26

Discussion

The various commonly used history and clinical screening tests have limited

- Epworth Sleepiness score (ESS) >10
- Baseline spirometry

Aim

The aim of our retrospective analysis was to assess the utility of various clinical parameters used as screening test for OSA, by estimating their sensitivity against polysomnography-confirmed cases of OSA, in patients referred for bariatric surgery

Methods

- All patients seen in medical bariatric clinic over 12 months included
- Patients on established CPAP were excluded
- Various screening tests based on locally agreed guidelines were carried out on a group of these patients based on clinician's decision including bariatric physicians and surgeons and nurse specialist
- Retrospective observational analysis of standard clinical practice
- Patients with abnormal results were referred for formal sleep studies

- sensitivity in diagnosing OSA
- There is always a discussion regarding the need to investigate OSA as this is likely to improve after bariatric surgery
 - OSA is multifactorial and mere weight loss after bariatric surgery may not resolve this (Ashrafian et al, Thorax 2011)
- Establishment of a diagnosis of OSA is important as this has significant anaesthetic implications during peri-operative management
 - Patients with OSA are more sensitive to opioid analgesics and hence risk of respiratory failure
 - Re-establishment on CPAP is vital after bariatric surgery to safely wean the patient off the ventilator during surgery
- •OSA takes longer to resolve after bariatric surgery it is therefore vital that post-operative follow up is also arranged for these patients (Sjostrom et al, NEJM 2007)
- •OSA related disordered breathing and related hypoxemia may have impacts on wound healing and long term cardiovascular health

Limitations of our analysis

Not all patients referred to the clinic were assessed – some patients were deemed not to have OSA clinically

- ABG (based on pCO2>6, pO2, Sats on air <92%)</p>
- STOP BANG score>3
- ESS>10
- FEV1/VC <70%</p>

Results

- A total of 227 patients had been seen in the endocrine clinics in 12 months Mean BMI 47.6kg/m² (28-82)
- 39 patients had OSA already diagnosed and on OSA therapy
- •N=104 were assessed for OSA based on clinical index of suspicion
- 35/104 (34%) did not have OSA on formal sleep studies

• Many of the guidelines reported were based on local surgical and anaesthetics and hence not validated

Conclusion

- A significant proportion of patients have OSA
- Universal screening of all patients referred to bariatric services should be recommended, due to its wide prevalence and associated cardiovascular and respiratory morbidity
- It is important to appreciate that the various routinely used clinical screening tools only assess components of OSA and has limitations, thereby affecting their sensitivity and specificity
- Formal sleep oximetry studies are required, due to significant implications on anaesthetic and peri-operative management