Circadian rhythm of Ambulatory Blood Pressure in rotating night shift nursing professionals and its relation with 6- Sulfafoxyl Melatonin as neuroendocrine chronomolecule

Anjum B1,2, Verma N 1,3, Tiwari S1, Singh R1, Mahdi AA1 3
Departments of 1Physiology, 2Surgery (Gen), 3Biochemistry King George’s Medical University, UP, India.

Background
- Light is the most powerful synchronizer but, when exposure occurs at night then it disrupts the circadian rhythms.
- Night workers often experience fatigue mostly due to lack of proper sleep but also because they remain active & alert when their body thinks they should be resting.
- Night Shift may produce variable disruption in circadian pattern of BP/HR along with cortisol and melatonin hormone, which is neuroendocrine chronomolecule.

Aim and Objectives
- To Study the 24 hours chronomics of Ambulatory BP/HR and its relation with 6 sulfafoxyl melatonin in rotating night shift health care workers.
- To find out whether these changes in circadian pattern of BP/HR and in melatonin level produced by night shift are reversible or not in due course of time.

Methodology
Study Design: Prospective observational study
- 62 healthy nursing professionals aged 20-40 year, performing day and night shift duties were recruited from the Trauma Center, KGMU, India.
- Subjects with any acute/chronic illness, known patients of diabetes mellitus, other endocrinological disorders, hypertension, coronary artery disease, and chronic renal were excluded from the study.
- Ambulatory blood pressure and heart rate were recorded at every 30 min intervals while awake and each hour in night time.
- Estimated 6 sulfafoxyl melatonin by IBL International ELISA Kit.

Statistical Analysis:
- Ambulatory blood pressure monitoring records were sent to Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA for advanced cosinor analysis.
- Data was analysed by INSTAT graph pad software and groups were compared by paired t test. p<0.05* was considered just significant, p<0.01 **moderate/every significant and p<0.001 ***highly significant.

Results

Table: Baseline characteristics of night shift workers.

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Night Shift Workers (n = 62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>24.74 ± 3.81</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>53.21 ± 8.85</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>160.44 ± 8.16</td>
</tr>
<tr>
<td>Body mass index (BMI)</td>
<td>20.59 ± 2.40</td>
</tr>
<tr>
<td>Diet</td>
<td></td>
</tr>
<tr>
<td>Vegetarian</td>
<td>23 (37.10%)</td>
</tr>
<tr>
<td>Non-Vegetarian</td>
<td>39 (62.90%)</td>
</tr>
</tbody>
</table>

The altered circadian pattern of Double amplitude, Acrophase and Hyperbaric index of BP/HR and melatonin level could be contributed to sleep disturbances and adverse effects of night shift schedule. The present study indicates the desynchronisation was found during night shift and entrainment of circadian rhythm occurs in the day shift. Entrainment of these physiological rhythms in day shift leads to resynchronization.