

## **EVOLUTION IN ACROMEGALIC PATIENTS WITH DISCORDANT GH-IGF1 LEVELS DURING MEDICAL TREATMENT**



Monica Livia Gheorghiu<sup>1, 2</sup>, Iulia Florentina Vargatu<sup>1</sup>, Raluca Alexandra Trifanescu<sup>1, 2</sup>, Anda Dumitrascu<sup>1</sup>, Andra Caragheorgheopol<sup>1</sup> <sup>1</sup>National Institute of Endocrinology "C.I. Parhon", <sup>2</sup>"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania

**INTRODUCTION.** In acromegalic treated patients, GH and IGF1 discrepancies are not rare and pose a challenge for the management of this disease. The reported therapeutical efficacy of somatostatin analogs (SSA), *i.e.* normalization of GH and IGF-1, is 50 – 70%. In Romania this specific treatment is financially supported by the Romanian National House of Health Insurance for patients with acromegaly.

AIM OF STUDY: To evaluate the characteristics and evolution in patients with discordant GH-IGF-1 levels during medical treatment.

METHOD: A retrospective review of 22 patients (18 F, 4 M) with acromegaly admitted at the "C.I. Parhon" Institute, Bucharest and treated with SSA and/or cabergoline (CAB) (2011-2015) according to the Protocol of the Romanian National House of Health Insurance for patients with acromegaly, which states that in patients with suboptimal control of the disease at 3 – 6 months, the dose of SSA should be increased +/- CAB or +/ only pegvisomant.

Criteria for disease control: Optimal response to SSA was considered when random GH ≤ 1 ng/mL and normal age-adjusted IGF-1 level were attained. Radiological evaluation included pituitary CT/MRI.

## RESULTS

Six patients out of 22 were controlled on SSA+/- CAB treatment (27%), 9 were not controlled (41%). In 7 of 22 patients (31.8%), all women, we found discordant

GH – IGF1 values during follow-up. The patients had a mean number of 6.7 evaluations of IGF-1 and GH (3 – 8) during a mean follow-up of 34.5 months (25 – 42). Mean elevated IGF-1 was 1.43 x upper limit of normal (1.08 – 1.85).

All 7 patients were treated with SSA (4 also + CAB), 4 had previous pituitary surgery, 1 had also previous radiotherapy.

Table 1. Baseline characteristics of patients with discordances Table 2. Follow-up of GH, IGF-1, treatment and outcome in patients with GH-IGF-1 discordances

| Initials | Age (yrs)<br>at diag      | BMI<br>(kg/m²) | T* before<br>SSA (mm) | Previous Surgery/<br>Radiotherapy** | Medical<br>treatment       | GHr<br>before<br>SSA<br>(ng/ml) | IGF1<br>before<br>SSA<br>(xULN*) | No. of<br>evalu-<br>ations | No. of<br>discor-<br>dances | GHr<br>after<br>SSA<br>(ng/ml)   | IGF1<br>after<br>SSA<br>(xULN) | Treatment<br>option                           | Outcome<br>GH-IGF1 /<br>T    |
|----------|---------------------------|----------------|-----------------------|-------------------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------|-----------------------------|----------------------------------|--------------------------------|-----------------------------------------------|------------------------------|
|          |                           |                |                       |                                     |                            |                                 |                                  |                            |                             | 0.9                              | 1.35                           |                                               |                              |
| D. A.    | 61                        | 25.5           | m/7.2                 | SS                                  | LAN PR 30                  | 3.7                             | 2.15                             | 5                          | 4                           | 0.73                             | 1.38                           | Stable SSA                                    | Discordant/                  |
|          |                           |                |                       |                                     | mg/2 wks                   |                                 |                                  |                            |                             | 0.49<br>0.86                     | 1.25<br>1.42                   | dose                                          | Stable T                     |
| I.M.     | 49                        | <b>25</b>      | M/12                  | SS                                  | OCT LAR 20-<br>30 mg/4 wks | 10.6                            | 2.66                             | 6                          | 2                           | 1.55<br>1.04                     | 0.97<br>0.87                   | Increased dose<br>at 30 mg/4 wk,<br>added CAB | Normalized /<br>T↑25%        |
| J.D.     | 27                        | 21             | M/10                  | SS; GK                              | OCT LAR 20-<br>30 mg/4 wks | 13.5                            | 1.32                             | 3                          | 3                           | 0.43<br><b>5.9</b><br><b>1.2</b> | <b>1.08</b><br>0.77<br>0.65    | Increased dose<br>at 30 mg/4 wks              | Normalized/<br>T↓20%         |
| K.I.     | 46                        | 30.4           | M/20                  | -                                   | OCT LAR 20<br>mg/4 wk      | 6                               | 3.96                             | 7                          | 1                           | 1                                | 1.19                           | Increased dose,<br>added CAB                  | Discordant/<br>T↓5%          |
| T.M.     | 35                        | 28             | m/7.5                 | _                                   | OCT LAR 20<br>mg/4 wks     | 7.1                             | 1.27                             | 6                          | 1                           | 5.6                              | 0.98                           | Increased dose<br>then HVR+<br>Pegvisomant    | Both<br>increased /<br>T↑16% |
| T.G.     | 36                        | 34.5           | m/3.5                 | SS                                  | OCT LAR 20-<br>30 mg/4 wks | 1.7                             | 1.7                              | 8                          | 3                           | 0.92<br>0.43<br>0.79             | 1.17<br>1.17<br>1.14           | Increased dose<br>at 30 mg/4 wks              | Normalized/<br>Stable T      |
| T.J.     | 63                        | 53.6           | M/23                  | -                                   | OCT LAR 20-<br>30 mg/4 wks | 4.35                            | 7.4                              | 6                          | 5                           | 0.3<br>0.39<br>0.5               | 1.83<br>1.85<br>1.5            | Increased dose,<br>added CAB                  | Discordant/<br>T↓>50%        |
| T= tumor | <sup>-</sup> maximal diam | neter. M=m;    | acroadenoma. m        | =microadenoma,                      | Autogel 120<br>mg/4 wks    | of normal                       |                                  |                            |                             | 0.15<br>0.24                     | 1.83<br>1.73                   |                                               |                              |

| Т | . <b>M</b> . | 35 | 28   | m/7.5 | _  |
|---|--------------|----|------|-------|----|
| Т | .G.          | 36 | 34.5 | m/3.5 | SS |
| Τ | ſ.J.         | 63 | 53.6 | M/23  | -  |

\*\*SS/FS=transsfenoidal/transfrontal surgery, GK=Gamma-Knife; HVR=High Voltage radiotherapy

| Table 3. Evolution of complications in patients v | <u>with</u> |  |  |  |  |  |
|---------------------------------------------------|-------------|--|--|--|--|--|
| GH-IGF-1 discordances                             |             |  |  |  |  |  |

|      |        |                    | Glycemic status       |         |          |  |  |
|------|--------|--------------------|-----------------------|---------|----------|--|--|
| Name | BMI    | Hypertension       | DM/IFG/IGT            | HbA1c   | HbA1c    |  |  |
|      |        |                    | DIVI/IFG/IGT          | pre-SSA | post-SSA |  |  |
| D.A. | ↓ 3%   | Stable, controlled | DM II, controlled     | 6.4     | 7.4      |  |  |
| I.M. | ↓ 11%  | No                 | No                    | 4.9     | 5        |  |  |
| J.D. | Stable | No                 | No                    | 4.8     | 4.9      |  |  |
| K.I. | ↑ 6%   | Stable, controlled | Stable IFG            | 5       | 5.5      |  |  |
| T.M. | Stable | No                 | No                    | 4.9     | 4.9      |  |  |
| T.G. | ↑ 10%  | Stable, controlled | Stable IFG            | 5.8     | 6        |  |  |
| T.J. | ↑ 10%  | Stable, controlled | IFG, aggravated to DM | 6.2     | 6.2      |  |  |
| 1.J. |        | Stable, controlled |                       | 0.2     | 0.2      |  |  |

\*ULN=upper limit of normal

## Table 4. PreSSA characteristics in patients with discordances compared with with controlled & uncontrolled patients

| Pre SSA treatment   | Nadir GH in OGTT | IGF1 (x ULN) | Tumor size (mm) |
|---------------------|------------------|--------------|-----------------|
| Controlled on SSA   | 9.90             | 3.08         | 16.33           |
| Uncontrolled on SSA | 15.21            | 2.80         | 21.99           |

| Discordant GH-IGF-1 | 6.15 | 2.18 | 11.89 |
|---------------------|------|------|-------|
|---------------------|------|------|-------|



• Elevated IGF-1 despite normal GH levels have been described in adolescence, pregnancy, hyperthyroidism, hepatic or renal insufficiency (excluded in our patients), early postoperative period or mild active acromegaly. There are controversies regarding obesity as a contributing factor (42% of patients were obese, 42% were overweight). The long-term evolution in acromegalic patients with GH-IGF-1 discordance and the indication for treatment are not well established.<sup>1</sup>

## CONCLUSION

•Greater uniformity of the assays is needed in order to reduce these discrepancies and enable a correct therapeutic management.

•Management of acromegalic patients with discordant GH – IGF-1 values needs to be individualized and long-term studies on morbidity and mortality are needed.

<sup>1</sup> Freda PU, <u>Clin Endocrinol (Oxf)</u>. 2009 Aug;71(2):166-70