Exploring metabolomic changes due to cortisol deficiency in early development using the ferredoxin (fdx1b) null-allele zebrafish

Meltem Weger¹, Aliesha Griffin¹, Benjamin Gorling², Angela E. Taylor³, Burkhard Luy², Ferenc Mueller¹, Nils Krone³,⁴

¹Institute of Cancer and Genomic Sciences, ²Institute of Organic Chemistry, Karlsruhe Institute of Technology; ³Department of Human Metabolism, University of Sheffield

Aim

Significant gaps remain on the understanding of the in vivo impact of cortisol deficiency on metabolic pathways during embryonic development. Herein, we present a newly established cortisol deficient zebrafish mutant line in order to investigate into the pathogenic effects of cortisol deficiency in vivo.

Introduction

Cortisol production requires electron transfer mediated by ferredoxin (FDX1, Adx).

The zebrafish model for development and endocrine research

- Vertebrate
- Large offspring, small embryos (high-throughput studies, drug screens)
- Transparency of embryos (Life imaging)
- Rapid development
- Easy genetic manipulation
- High conservation of endocrine system to human

Conclusion

The fdx1b null-allele zebrafish line is a promising in vivo model to explore the pathophysiologic impact of glucocorticoid deficiency on energy metabolism relevant to early development and potentially adult life.

Results

fdx1b null-allele zebrafish larvae reveal a failure in their Visual Background Adaptation (VBA) behaviour

The VBA behavior can be rescued with the synthetic steroid hormone dexamethasone (DEX).

fdx1b null-allele zebrafish larvae are impaired in cortisol synthesis, cortisol regulated gene expression and in their stress response

Cortisol deficiency leads to metabolic changes in pathways involved in energy and biomolecule synthesis

Transcriptomics

RNA-seq

Metabolomics

Nuclear magnetic resonance (NMR) spectroscopy

Material and methods

Establishing a fdx1 null-allele zebrafish mutant line using Transcription Activator-like Effector Nucleases (TALENs)

From the duplicated zebrafish fdx1 genes (fdx1a, fdx1b), fdx1b is mediating cortisol synthesis. Fdx1b binding TALEN sites target the conserved motif 1 including cysteine residues for Fe/S binding. Generation of an allele (fdx1b¹⁰²⁸⁰⁵) with a 12 bp in-frame deletion removing a conserved cysteine in motif 1.