

Diazoxide Responsive Congenital Hyperinsulinism in a Patient with Dual Genetic Aetiology (HNF4A and ABCC8 mutation)

Dinesh Giri¹, Sarah E. Flanagan², Julie Park¹, Sian Ellard², Mo Didi¹, Senthil Senniappan¹ ¹DEPARTMENT OF PAEDIATRIC ENDOCRINOLOGY, ALDER HEY CHILDREN'S HOSPITAL, LIVERPOOL, UK ²DEPARTMENT OF MOLECULAR GENETICS, ROYAL DEVON AND EXETER HOSPITAL, EXETER, UK

Background

Congenital Hyperinsulinism (CHI) results from unregulated insulin secretion from pancreatic β -cells, which leads to persistent

hypoglycaemia. Mutations in 9 different genes are reported and phenotypic variability exists both within and between the

genetic subgroups. Variable penetrance has been described in some families with the same mutation; for example HNF4A

mutations cause neonatal hypoglycaemia and/or maturity onset diabetes of the young (MODY).

Case

- Male infant, born at 35 weeks gestation with a birth weight of 4.3kg (+3.6SDS)
- No h/o gestational diabetes in Mum
- Recurrent hypoglycaemic episodes from day one of life.

Investigations

- Glucose<0.5mmol/L</p>
- Plasma insulin 1357pmol/L
- C-peptide 3280pmol/L
- Plasma free fatty acids and β -hydroxybutyrate<100 μ mol/l

Treatment

Diazoxide (5mg/kg/day), with a progressive increase to 20mg/kg/day to maintain euglycaemia.

Family History

- Father was slim, Type 2 diabetes mellitus from his thirties, on Metformin.
- Paternal grandmother-Type 2 Diabetes.
- No family history of hypoglycaemia.

Genetics

- Heterozygous HNF4A mutation (p.R245P) and two heterozygous ABCC8 mutations (p.G92S; p.A1185V) in the proband.
- p.A1185V ABCC8 mutation-inherited from the baby's unaffected mother
- p.R245P HNF4A and p.G92S ABCC8 mutations-inherited from the father.
- All three mutations are novel, affect conserved residues
- Predicted to be pathogenic by in silico analysis.

It is therefore likely that the CHI in the proband is resulting from a dual aetiology. Identification of a HNF4A mutation in

the father is consistent with a diagnosis of MODY. He has subsequently been switched treatment to Gliclazide resulting

in improved glycaemic control.

Conclusion

HNF4A CHI is often transient and responsive to diazoxide. In contrast recessively inherited ABCC8 mutations usually

cause diazoxide-resistant CHI. Interestingly, our patient is responsive to diazoxide despite the dual genetic aetiology.

The mechanism(s) underlying the molecular interaction between HNF4A and ABCC8 mutations are unclear.