INTRODUCTION

• The prevalence of growth hormone deficiency (GHD) varies from 1:3,500 to 1:10,000.1 GHD is most commonly isolated ie. IGHD, although it can be combined with other pituitary hormone deficiencies (eg. MPHD, midline defects, CNS tumours and following cranial irradiation).

• There is no current consensus diagnostic gold standard for IGHD.2

• Due to inherent difficulties in quantitatively assessing GH secretion and problems directly associated with provocation tests (Box 1), there is considerable variation in the degree of use and interpretation of these biochemical tests by different clinicians.

BOX 1: PROBLEMS WITH GH PROVOCATION TESTS1,5

- Poor reproducibility
- Variability of different GH assays
- Invasive
- Time consuming
- Expensive ~ £1,000 per test
- Potential risks & side effects (dependent on test): hypoglycaemia, hypotension, anaphylaxis, vomiting, nausea, hypokalaemia
- Validity: arbitrary cut off regardless of stimulus/ assay (USA <10 μg/l, UK <6.7 μg/l)
- Dependent on age, body composition, pubertal status, nutritional status, GH secretion prior to testing
- False negatives (“fail”) in prepubertal children: no consensus on sex steroid priming
- Non-physiological.

RESULTS

138 patients underwent 2 GH stimulation tests; 32% (45) had a normal GH peak (>6.7 μg/l) on repeat testing and were therefore diagnosed as idiopathic short stature (ISS).

<table>
<thead>
<tr>
<th></th>
<th>IGHD (n=93)</th>
<th>ISS (n=45)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (females:male)</td>
<td>27F:66M</td>
<td>13F:32M</td>
<td></td>
</tr>
<tr>
<td>Mean Age at 1st Assessment (yr.)</td>
<td>8.1 (0.95-16.29; SD 4.2)</td>
<td>7.9 (1.09-14.1; SD 3.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Mean Bone Age delay (yr.)</td>
<td>-1.1 (-5.2-2.8; SD 1.33)</td>
<td>-0.86 (-5.8-1.5; SD 1.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Low IGF-1 level6 (number of children, %)</td>
<td>37 (39.8%)</td>
<td>10 (22 %)</td>
<td>NS</td>
</tr>
<tr>
<td>HV SDS pre-test (95% CI; SD)</td>
<td>-0.86 (-5.9-5.1; SD 2.1)</td>
<td>-0.5 (-5.3-11.85; SD 3.3)</td>
<td>NS</td>
</tr>
<tr>
<td>HV SDS 1 yr. post-test (95% CI; SD)</td>
<td>2.36 (-4.3-13.6; SD 3.5)</td>
<td>0.6 (-5.2-7.2; 3.5)</td>
<td>0.016</td>
</tr>
<tr>
<td>Final Height SDS (95% CI; SD)</td>
<td>-0.92 (-5.6-1.8; SD 1.9)</td>
<td>-1.19 (-2.2-0.6; SD 0.9)</td>
<td>NS</td>
</tr>
</tbody>
</table>

IGF-1: insulin-like growth factor 1, HV: height velocity, SD: standard deviation, SDS: standard deviation score, CI: confidence interval, NS: not significant.

1 Compared to IGF-1 reference values according to Tanner stages I-V.

AIMS & OBJECTIVES

1. To interrogate clinical, biochemical and radiological parameters in the diagnosis of IGHD and Idiopathic Short Stature (ISS) in an attempt to reduce the need for dynamic function testing, and therefore the need for confirmatory testing.

2. To determine what proportion of children diagnosed with IGHD continue to be GH deficient after attaining their final height.

METHODS

• In our centre, 3 different GH provocation tests are used: insulin tolerance (ITT), glucagon stimulation (GST) and arginine stimulation (AST).

• A retrospective review of all patients from 2002 to 2014 undergoing two tests was performed. A cut-off value of 6.7 μg/l (20 mU/l) was used to differentiate between normal and subnormal GH secretion. Those patients with two abnormal tests were compared with those with one abnormal test.

DISCUSSION/CONCLUSION

• A single biochemical test for the diagnosis of IGHD is not appropriate as GH secretion is a continuum between normality and abnormality. We have previously shown that there is no cut-off on a 1st GH-stimulation test that will predict an abnormal 2nd test6.

• Our study shows that approximately one-third of patients who undergo dynamic function testing for GHD will have a normal GH peak on a 2nd test.

• Although Gianfaroni et al.7 achieved 95% sensitivity and 96% specificity in confirming the diagnosis of GHD by combining IGF-1 and height velocity data, our data shows that there is no difference between IGHD vs ISS in terms of mean BA delay, IGF1 levels and pre-test HV SDS. Our data indicates that these parameters independently, or in combination, are not able to improve the pre-test probability of having a low GH peak on 2 tests.

• Whilst our study shows a significant difference in HV SDS between IGHD and ISS 1-year after dynamic testing (reforming the effect of GH treatment in IGHD), there appears to be no significant difference in final height outcomes in either group.

• At present, undertaking 2 GH-stimulation tests appears to be the best way to distinguish IGHD from ISS, which is consistent with NICE guidance1.

REFERENCES

6. Jura Z et al. GH testing reducing the need for a second test for the diagnosis of GH deficiency. Endocrine Abstracts (2013) 33 OC1.1 | DOI:10.1530/endoabs.33.OC1.1

The Consensus Guidelines from the GH Research Society1 in 2000 state that the diagnosis of IGHD should be based on:

(a) clinical history and examination
(b) auxological data
(c) radiological evaluation (bone age and pituitary imaging)
(d) biochemical testing of the GH-axis (ie. measurement of IGF-1/IGFBP-1 and by measurement of GH secretion via provocation tests)