

Body mass index but not visceral adiposity index is related to vitamin D levels in overweight HIV-patients

M. Cayón¹ C. García-Figueras², P. Bancalero³, A. Terrón³ Endocrinology and Nutrition Unit¹. Internal Medicine Unit². Infectious Diseases Unit³. Hospital S.A.S. Jerez de la Frontera, Jerez de la Fra., Spain.

Introduction	Several studies have shown that body mass index (BMI) and visceral adiposity index (VAI) are inversely related to serum 25-hydroxy vitamin D (250HD) in general population.
	There is a lack of studies performed in HIV population, whose body fat distribution is altered by lipodystrophy or liver disease.
	We aimed to analyze the cross-sectional associations of VAI and BMI with the 250HD concentration and parameters related to calcium-phosphorus metabolism in HIV-infected patients.

Methods/ Design

46 male patients with HIV-infection and BMI >25 Kg/m² were included. Sex-specific for males VAI was calculated using a model of adipose distribution (MOAD) defined as: [Waist Circumference/39.68+1.88*(BMI)]*(Triglycerides/1.03) *(1.31/HDL). VAI, BMI and 250HD were divided into two groups at the 75th, 50th and 50th, percentiles respectively, according to previous studies.

The mean age of the cohort was 43.5 ± 12.6 years. Clinical and analytical data are shown in TABLE 1. Levels of 250HD were significantly lower among patients with higher BMI (p = 0.034) but non-significant differences were observed between groups of VAI (\geq 75th percentile vs <75th percentile; p=0.502). Though levels of i-PTH and calcium were higher among patients with higher BMI, no significant differences were observed (p>0.05 in all cases). Also, no significant differences in calcium-phosphorus metabolism according to VAI percentile were found. (TABLE 2 and 3).

Table 1: Clinical and analytical data.				
Gender (male;%)	100			
Age (years; mean ± SD)	43.5 ± 12.6			
BMI (Kg/m ² ; mean \pm SD) 28.9 \pm 3.8				
BMI (p25)	25.9			
BMI (p50)	28.1			
BMI (p75)	30.4			
VAI (ng/mL; mean ± SD)	5.7 ± 3.9			
VAI (p25)	2.9			
VAI (p50)	4.9			
VAI (p75)	8.1			
Vitamin D (mean ± SD)	30.1 ± 10			
Vitamin D (p25)	26.9			
Vitamin D (p50)	32.4			
Vitamin D (p75) 37.6				

Table	2:	Variables	related	to ca	alcium-	phosph	orus	metabolis	sm a	ccord	ing t	to
BMI	perc	centile.										

	BMI ≥p50	BMI <p50< th=""><th>р</th></p50<>	р
Calcium (mg/dL)	9.7 ± 0.3	9.6 ± 0.4	NS ^a
Phosphorus (mg/dL)	2.8 ± 0.5	2.9 ± 0.6	NS ^a
i-PTH (pg/mL)	52.9 ± 22.9	50.1 ± 23.3	NS ^a
250HD (ng/mL)	27.2 ± 9.2	32.9± 10.1	0.034 ^a

SD: standard deviation; BMI: body mass index; VAI: visceral adiposity index

A) from U Mann-Whitney; BMI: body mass index; NS: not significant.

Table 3: Variables related to calcium-phosphorus metabolism according to VAI percentile.

	VAI ≥p75	VAI <p75< td=""><td>р</td></p75<>	р
Calcium (mg/dL)	9.5 ± 0.3	9.7 ± 0.4	NSa
Phosphorus (mg/dL)	2.8 ± 0.6	2.9 ± 0.6	NS ^a
i-PTH (pg/mL)	50.2 ± 23.3	51.9 ± 23.1	NSa
250HD (ng/mL)	30.9 ± 13.1	29.5 ±13.6	NS ^a

a) from U Mann-Whitney; VAI: visceral adiposity index; NS: not significant.

According to our results, we cannot conclude that the inverse relationship between 250HD and VAI described in general population, can be observed in our HIV cohort when MOAD formula was used.

Nevertheless, the inverse relationship with BMI is present.

Anyway, repercussions on calcium-phosphorus metabolism were inappreciable.

