Overdiagnosis of osteoporosis in a patient with short stature and partial growth hormone insensitivity due to misinterpretation of Dual-energy x-ray absorptiometry (DEXA)

Paraskevi Floroskoufi¹, Vasiliki Daraki¹, Stratakis Ioannis², George Kalikakis¹ and Stathis Papavasilou¹

¹Department of Endocrinology Diabetes and Metabolic Diseases, University Hospital of Crete, Heraklion, Crete, Greece, ² Department of Nuclear Medicine, University Hospital of Crete, Heraklion, Crete, Greece

Bone densitometry is currently one of the mainstays in the evaluation of systemic bone diseases. The most frequently assessed densitometric parameter is areal bone mineral density (BMD), measured by dual energy X-ray absorptiometry (DEXA) and expressed as g/cm². However it takes into account only the bone surface and not the depth of the bone which is being measured.

As a result the findings may represent an underestimation in patients with small bones such as in adults with short stature due to growth hormone insensitivity syndrome (GHIS) caused by mutations in the GH receptor gene or its downstream mediators. Volumetric bone density (BMAD) expressed as g/cm³, has been considered to be a more accurate estimate of bone density in these patients.

CASE REPORT

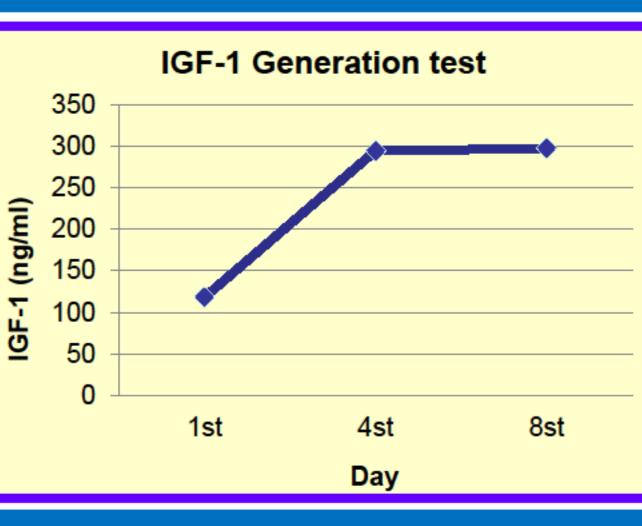
A 47-yr-old woman was admitted to our clinic for investigation of premenopausal osteoporosis. She had performed a DEXA due to bone pains, which revealed severe osteoporosis (lumbar spine T-score:-2,9, femoral neck T-score:-3).

MEDICAL HISTORY

- Normal birth size
- No history of growth retardation
- No metabolic diseases

PHYSICAL EXAMINATION

- > short stature (1,47 m)
- normal BMI
- > thin lips
- > small chin



	LABORATORT ILSTS					
	WBC	7,8 K/µI	Glucose	87 mg/dl		
	RBC HBC	4,3 M/µl 12,8 g/dl	Urea	0.7 mg/dl		
			Cr	27 mg/dl		
			Chol.	191 mg/dl		
	НСТ	38,2 %	SGOT	24 IU/ml		
			SGPT	21 IU/ml		
	PTL	320 K/µI	ALP	61 IU/ml		

HORMONE MEASUREMENTS

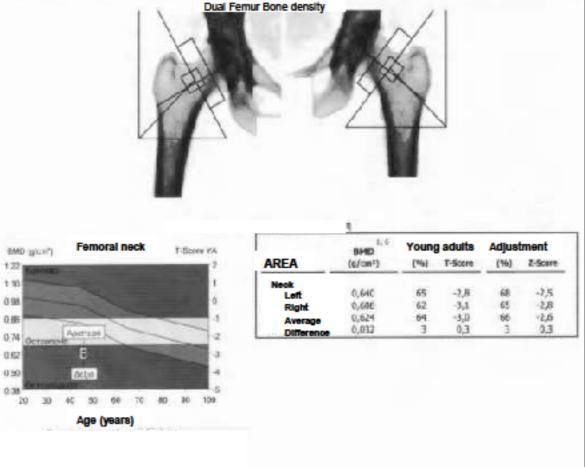
TSH	1,017 µUL/ml	PTH	48,3 pg/ml	≻Vitamin D	DATE	11/2014	12/2
FT4	0,87 ng/dl	Ca	9,5 mg/dl	insufficiency	GH	3,54	16,7
FSH	17,04 mIU/mI	Alb.	4,7 g/dl	Normal calcium			
LH	25,15 mlU/ml	Р	4,2 mg/dl	metabolism	IGF-1 (101-267	118	103
E2	113 pg/ml	Mg	2,2 mg/dl	≻Gonadotropin	ng/ml)		
ACTH	10,7 pg/ml	25-OH BIT.D	26 ng/ml	values indicate	IGF-BP3 (3,4-6,7		
CORT	21,7 µg/dl			perimenopause	μg/ml)		

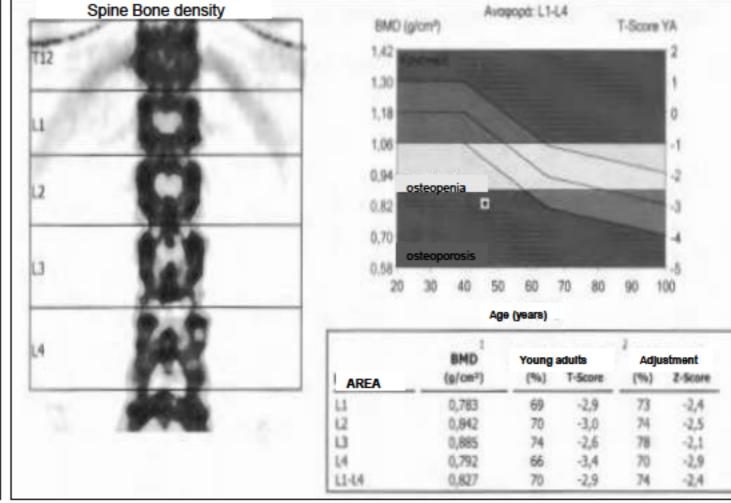
DATE	11/2014	12/2014	01/2016	
GH	3,54	16,7	6,09	_
IGF-1 (101-267 ng/ml)	118	103	104	IGF-1 (ng/ml)
IGF-BP3 (3,4-6,7 µg/ml)			3,2	_

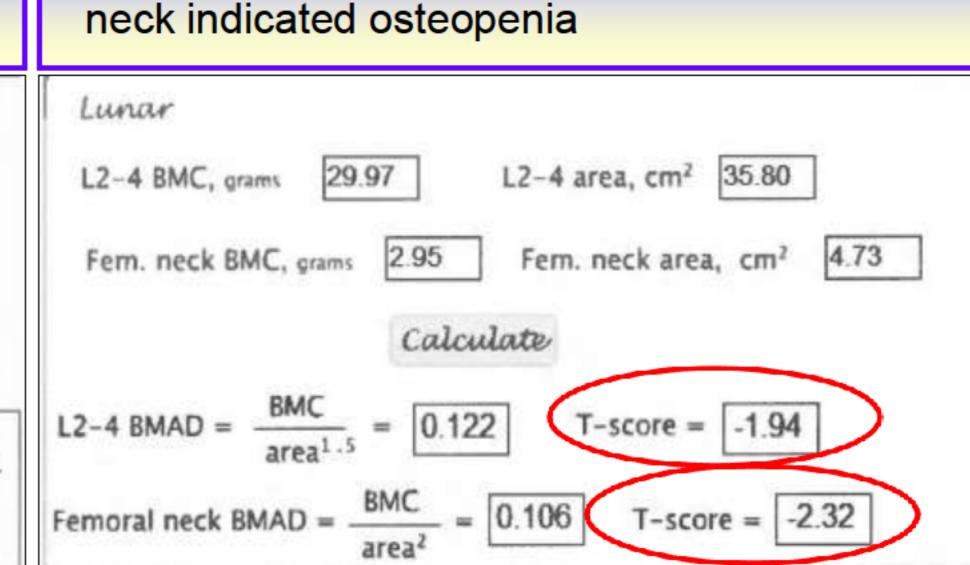
Findings support a diagnosis of partial GH insensitivity syndrome ➤IGF-1 generation test is not diagnostic for mild defects ➤ Genetic test is pending

RADIOLOGICAL FINDINDS

X-ray


DEXA


BMAD

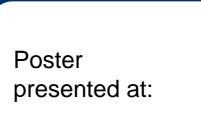

X-ray of lumbar and thoracic spine revealed no fracture

DEXA revealed severe osteoporosis (lumbar spine T-score:-2,9, femoral neck T-score:-3)

Estimated BMAD at the spine and femoral

DIAGNOSIS

The patient was diagnosed with short stature due to partial growth hormone insensitivity syndrome and osteopenia. She was treated with vitamin D and calcium supplements.


CONCLUSION

The described case highlights the importance of a high degree of suspicion for diagnosis of partial GHIS in patients with short stature and osteoporosis. Appropriate bone mass estimation in these patients is crucial for therapeutic decisions because the low BMD found in them, using conventional DEXA densitometry, may be an artifact of the reduced bone size.

REFERENCES

- 1. Carlos E. Benbassat et al. "Are Adult Patients with Laron Syndrome Osteopenic? "The Journal of Clinical Endocrinology & Metabolism 88(10):4586–4589
- 2. L K. Bachrach et al. "Bone Mineral, Histomorphometry, and Body Composition in Adults with Growth Hormone Receptor Deficiency " Journal of bone and mineral research 13(3), 1998
- 3. C. K. Buckway et al. "The IGF-I Generation Test Revisited: A Marker of GH Sensitivity" The Journal of Clinical Endocrinology & Metabolism 86(11):5176–5183

