

A rare case of sex reversal during puberty

Meyer G¹, Sohn M², Badenhoop K^{1,} Bojunga J¹

¹Division of Endocrinology, Department of Internal Medicine 1, Goethe-University Hospital, Frankfurt, Germany

²Department of Urology, Markus-Krankenhaus, Frankfurt, Germany

Background:

Disorders of sexual development (DSD) are rare and, in particular in developed countries, they are predominantly diagnosed during early childhood. DSD show a wide variety of phenotypes and can be difficult to classify.

Clinical Case:

A 34-year-old refugee from Somalia was referred because of a suspected DSD. Due to ambiguous, but predominantly female external genitalia at birth he was classified and raised as a girl in Somalia, whereas his subjective gender identity has always been male. Puberty led to a significant virilization of the body but only to a very limited virilization of the external genitalia. The patient presented himself with an undoubtedly male-type body composition, a deep voice, an adequate androgenic hair distribution, ongoing androgenetic alopecia and no gynecomastia. External genitalia were ambiguous, but now predominantly male with micropenis and hypospadia glandis [fig1]. Small testes could be palpated in both labia, between which a small perineal orifice appeared.

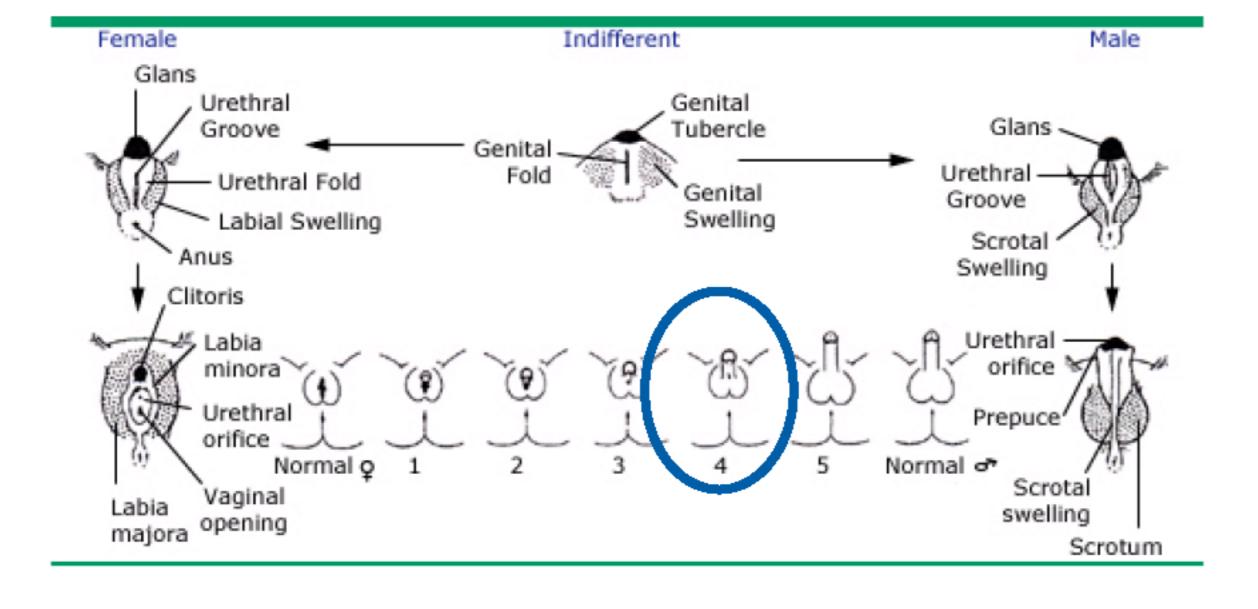


Fig 1: Prader`s classification of grades of genital ambiguity (4); patient`s finding marked by circle

Diagnostic laparoscopy did not show any female internal genitalia. Sex hormones lay within normal male ranges: LH 8.4 mE/ml (n 1.7-8.6), FSH 7.1 mE/ml (n 1.5-12.4), testosterone (T) 704 ng/dl (n 249-836), dihydrotestosterone (DHT) 13.3 ng/dl (n 10-60), DHEAS 214.8 μg/dl (n 160-449), androstenedione 3 ng/ml (n 1.23-3.75). Estradiol level was borderline elevated (54 pg/ml, n 27.1-52.2), whereas Müllerian inhibiting hormone was remarkably increased (35.48 ng/ml, n 1.5-4.3) [table 1]. Chromosome analysis showed a regular male karyotype 46,XY.ishYp11.3(SRY+) [fig2]. Highly increased T/DHT-ratio of 54 (n 8-16) [fig 3] in combination with the masculinization defect strictly limited to external genitalia without gynecomastia led to the clinical diagnosis of steroid 5 alphareductase 2 deficiency (SRD).

	Results	normal range
LH	8.4 mE/ml	1.7 - 8.6
FSH	7.1 mE/ml	1.5 – 12.4
Testosterone (T)	704 ng/dl	249- 836
Dihydrotestosterone (DHT)	13.3 ng/dl	10 – 60
DHEAS	214.8 µg/dl	160 - 449
T/DHT ratio	54	8 - 16
Androstenedione	3 ng/ml	1.23 - 3.75
Estradiol	54 pg/ml	27.1 – 52.2
Müllerian inhibiting hormone	35.48 ng/ml	1.5 – 4.3

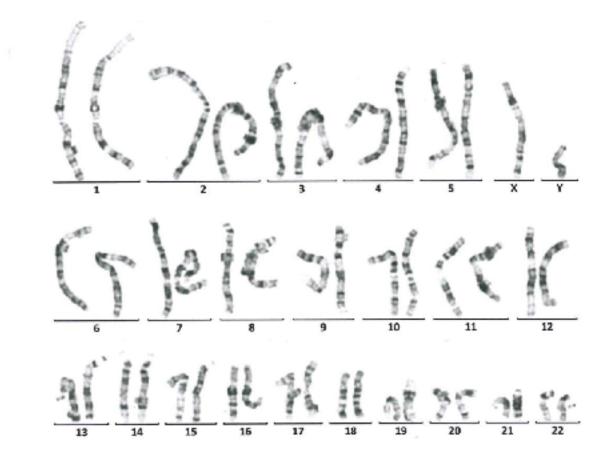


Fig 2: karyogram

Table 1: hormone levels

SRD is an autosomal recessive, 46, XY disorder of sexual development leading to an impaired virilization during embryogenesis due to defective conversion of T to DHT, which as the most potent androgen is essential for full masculinization of the external genitalia. In affected subjects, 5-alpha-reductase activity is reduced in genital skin fibroblasts. Clinical presentation is highly variable from almost entirely female to almost entirely male external genitalia. (1, 2) Pubertal increase in T can be sufficient for virilization of the remainder body at the time of expected puberty as seen in our patient. Consanguinity of patient's parents suggests a homozygous mutation in the SRD5A2 gene and a molecular genetic analysis is ongoing in order to identify the mutation. Over 50 different mutations have been described in the past (3).

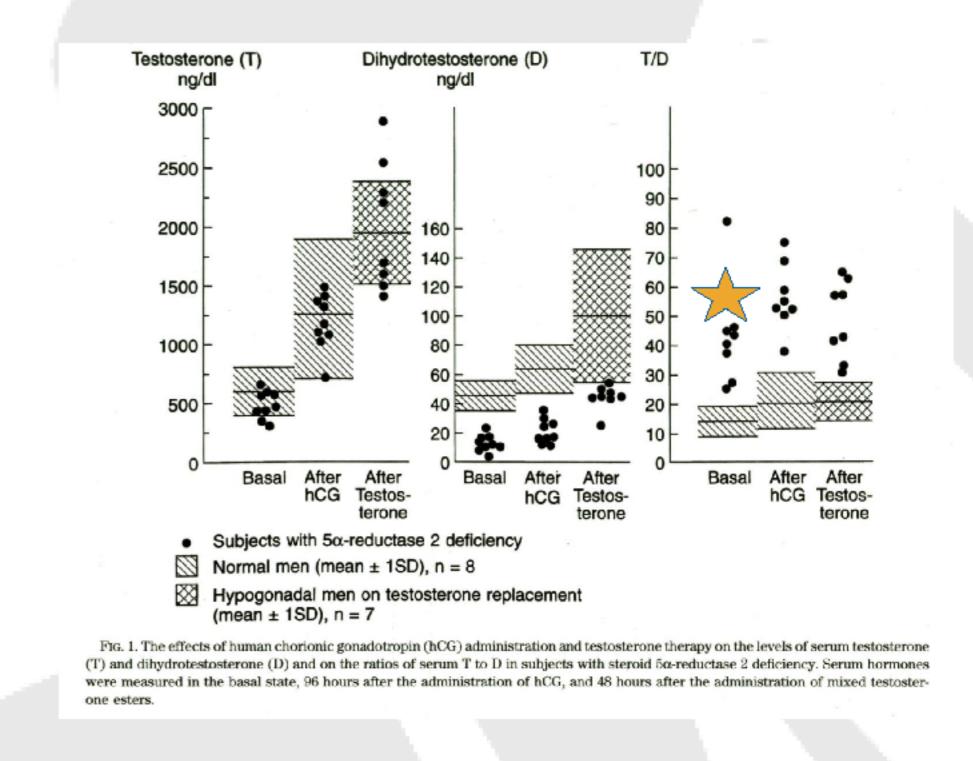
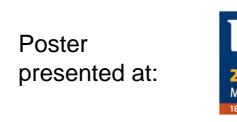


Fig 3: remarkably elevated T/DHT-ratio in patients with 5a-reductase 2 deficiency (5); patient's findings added as

Conclusions:


This case of a rare DSD elucidates impressively how an enzyme deficiency affects the mechanisms of androgen action in the process of sexual differentiation.

References:

- (1) Sinnecker GH et al. Phenotypic classification of male pseudohermaphroditism due to steroid 5 alpha-reductase 2 deficiency. Am J Genet. 1996; 63;223-230.
- (2) Wilson JD et al. Steroid 5 Alpha-Reductase 2 Deficiency. Endocr. Rev. 1993;14;577-93.
- (3) The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff.

 4) White PC, Speiser PW. Congenital adrenal hyperpasia due to 21-hydroxylase deficiency. Endocr Rev. 2000; 21:245-291. www.hgmd.cf.ac.uk/ac/index.php
- (5) Mendonca BB et al. Male Pseudohermaphroditism Due to Steroid 5a-Reductase 2 Deficiency. Medicine (Baltimore). 1996 Mar;75):64-76.

